Compare commits
9 Commits
0647bb8735
...
Ex3
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
409a71248a | ||
|
|
3018e4c60f | ||
|
|
142b8117ab | ||
|
|
2324790537 | ||
|
|
56a95ec733 | ||
|
|
8c73ee7c4e | ||
|
|
996e84b414 | ||
|
|
0970af19e7 | ||
|
|
2fb9a6be67 |
@@ -14,6 +14,7 @@
|
|||||||
#include "pch.h"
|
#include "pch.h"
|
||||||
#include "Geometry.h"
|
#include "Geometry.h"
|
||||||
#include "Bezier.h"
|
#include "Bezier.h"
|
||||||
|
#include <stdexcept>
|
||||||
|
|
||||||
using namespace DirectX;
|
using namespace DirectX;
|
||||||
|
|
||||||
|
|||||||
159
Simulations/DiffusionSimulator.cpp
Normal file
159
Simulations/DiffusionSimulator.cpp
Normal file
@@ -0,0 +1,159 @@
|
|||||||
|
#include "DiffusionSimulator.h"
|
||||||
|
#include "pcgsolver.h"
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
Grid::Grid() {
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
DiffusionSimulator::DiffusionSimulator()
|
||||||
|
{
|
||||||
|
m_iTestCase = 0;
|
||||||
|
m_vfMovableObjectPos = Vec3();
|
||||||
|
m_vfMovableObjectFinalPos = Vec3();
|
||||||
|
m_vfRotate = Vec3();
|
||||||
|
// to be implemented
|
||||||
|
}
|
||||||
|
|
||||||
|
const char * DiffusionSimulator::getTestCasesStr(){
|
||||||
|
return "Explicit_solver, Implicit_solver";
|
||||||
|
}
|
||||||
|
|
||||||
|
void DiffusionSimulator::reset(){
|
||||||
|
m_mouse.x = m_mouse.y = 0;
|
||||||
|
m_trackmouse.x = m_trackmouse.y = 0;
|
||||||
|
m_oldtrackmouse.x = m_oldtrackmouse.y = 0;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void DiffusionSimulator::initUI(DrawingUtilitiesClass * DUC)
|
||||||
|
{
|
||||||
|
this->DUC = DUC;
|
||||||
|
// to be implemented
|
||||||
|
}
|
||||||
|
|
||||||
|
void DiffusionSimulator::notifyCaseChanged(int testCase)
|
||||||
|
{
|
||||||
|
m_iTestCase = testCase;
|
||||||
|
m_vfMovableObjectPos = Vec3(0, 0, 0);
|
||||||
|
m_vfRotate = Vec3(0, 0, 0);
|
||||||
|
//
|
||||||
|
//to be implemented
|
||||||
|
//
|
||||||
|
switch (m_iTestCase)
|
||||||
|
{
|
||||||
|
case 0:
|
||||||
|
cout << "Explicit solver!\n";
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
cout << "Implicit solver!\n";
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
cout << "Empty Test!\n";
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Grid* DiffusionSimulator::diffuseTemperatureExplicit() {//add your own parameters
|
||||||
|
Grid* newT = new Grid();
|
||||||
|
// to be implemented
|
||||||
|
//make sure that the temperature in boundary cells stays zero
|
||||||
|
return newT;
|
||||||
|
}
|
||||||
|
|
||||||
|
void setupB(std::vector<Real>& b) {//add your own parameters
|
||||||
|
// to be implemented
|
||||||
|
//set vector B[sizeX*sizeY]
|
||||||
|
for (int i = 0; i < 25; i++) {
|
||||||
|
b.at(i) = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void fillT() {//add your own parameters
|
||||||
|
// to be implemented
|
||||||
|
//fill T with solved vector x
|
||||||
|
//make sure that the temperature in boundary cells stays zero
|
||||||
|
}
|
||||||
|
|
||||||
|
void setupA(SparseMatrix<Real>& A, double factor) {//add your own parameters
|
||||||
|
// to be implemented
|
||||||
|
//setup Matrix A[sizeX*sizeY*sizeZ, sizeX*sizeY*sizeZ]
|
||||||
|
// set with: A.set_element( index1, index2 , value );
|
||||||
|
// if needed, read with: A(index1, index2);
|
||||||
|
// avoid zero rows in A -> set the diagonal value for boundary cells to 1.0
|
||||||
|
for (int i = 0; i < 25; i++) {
|
||||||
|
A.set_element(i, i, 1); // set diagonal
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void DiffusionSimulator::diffuseTemperatureImplicit() {//add your own parameters
|
||||||
|
// solve A T = b
|
||||||
|
// to be implemented
|
||||||
|
const int N = 25;//N = sizeX*sizeY*sizeZ
|
||||||
|
SparseMatrix<Real> *A = new SparseMatrix<Real> (N);
|
||||||
|
std::vector<Real> *b = new std::vector<Real>(N);
|
||||||
|
|
||||||
|
setupA(*A, 0.1);
|
||||||
|
setupB(*b);
|
||||||
|
|
||||||
|
// perform solve
|
||||||
|
Real pcg_target_residual = 1e-05;
|
||||||
|
Real pcg_max_iterations = 1000;
|
||||||
|
Real ret_pcg_residual = 1e10;
|
||||||
|
int ret_pcg_iterations = -1;
|
||||||
|
|
||||||
|
SparsePCGSolver<Real> solver;
|
||||||
|
solver.set_solver_parameters(pcg_target_residual, pcg_max_iterations, 0.97, 0.25);
|
||||||
|
|
||||||
|
std::vector<Real> x(N);
|
||||||
|
for (int j = 0; j < N; ++j) { x[j] = 0.; }
|
||||||
|
|
||||||
|
// preconditioners: 0 off, 1 diagonal, 2 incomplete cholesky
|
||||||
|
solver.solve(*A, *b, x, ret_pcg_residual, ret_pcg_iterations, 0);
|
||||||
|
// x contains the new temperature values
|
||||||
|
fillT();//copy x to T
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
void DiffusionSimulator::simulateTimestep(float timeStep)
|
||||||
|
{
|
||||||
|
// to be implemented
|
||||||
|
// update current setup for each frame
|
||||||
|
switch (m_iTestCase)
|
||||||
|
{
|
||||||
|
case 0:
|
||||||
|
T = diffuseTemperatureExplicit();
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
diffuseTemperatureImplicit();
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void DiffusionSimulator::drawObjects()
|
||||||
|
{
|
||||||
|
// to be implemented
|
||||||
|
//visualization
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void DiffusionSimulator::drawFrame(ID3D11DeviceContext* pd3dImmediateContext)
|
||||||
|
{
|
||||||
|
drawObjects();
|
||||||
|
}
|
||||||
|
|
||||||
|
void DiffusionSimulator::onClick(int x, int y)
|
||||||
|
{
|
||||||
|
m_trackmouse.x = x;
|
||||||
|
m_trackmouse.y = y;
|
||||||
|
}
|
||||||
|
|
||||||
|
void DiffusionSimulator::onMouse(int x, int y)
|
||||||
|
{
|
||||||
|
m_oldtrackmouse.x = x;
|
||||||
|
m_oldtrackmouse.y = y;
|
||||||
|
m_trackmouse.x = x;
|
||||||
|
m_trackmouse.y = y;
|
||||||
|
}
|
||||||
51
Simulations/DiffusionSimulator.h
Normal file
51
Simulations/DiffusionSimulator.h
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
#ifndef DIFFUSIONSIMULATOR_h
|
||||||
|
#define DIFFUSIONSIMULATOR_h
|
||||||
|
|
||||||
|
#include "Simulator.h"
|
||||||
|
#include "vectorbase.h"
|
||||||
|
|
||||||
|
//impement your own grid class for saving grid data
|
||||||
|
class Grid {
|
||||||
|
public:
|
||||||
|
// Construtors
|
||||||
|
Grid();
|
||||||
|
|
||||||
|
|
||||||
|
private:
|
||||||
|
// Attributes
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class DiffusionSimulator:public Simulator{
|
||||||
|
public:
|
||||||
|
// Construtors
|
||||||
|
DiffusionSimulator();
|
||||||
|
|
||||||
|
// Functions
|
||||||
|
const char * getTestCasesStr();
|
||||||
|
void initUI(DrawingUtilitiesClass * DUC);
|
||||||
|
void reset();
|
||||||
|
void drawFrame(ID3D11DeviceContext* pd3dImmediateContext);
|
||||||
|
void notifyCaseChanged(int testCase);
|
||||||
|
void simulateTimestep(float timeStep);
|
||||||
|
void externalForcesCalculations(float timeElapsed) {};
|
||||||
|
void onClick(int x, int y);
|
||||||
|
void onMouse(int x, int y);
|
||||||
|
// Specific Functions
|
||||||
|
void drawObjects();
|
||||||
|
Grid* diffuseTemperatureExplicit();
|
||||||
|
void diffuseTemperatureImplicit();
|
||||||
|
|
||||||
|
private:
|
||||||
|
// Attributes
|
||||||
|
Vec3 m_vfMovableObjectPos;
|
||||||
|
Vec3 m_vfMovableObjectFinalPos;
|
||||||
|
Vec3 m_vfRotate;
|
||||||
|
Point2D m_mouse;
|
||||||
|
Point2D m_trackmouse;
|
||||||
|
Point2D m_oldtrackmouse;
|
||||||
|
Grid *T; //save results of every time step
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
||||||
11
Simulations/SphereSystemSimulator.cpp
Normal file
11
Simulations/SphereSystemSimulator.cpp
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
#include "SphereSystemSimulator.h"
|
||||||
|
|
||||||
|
std::function<float(float)> SphereSystemSimulator::m_Kernels[5] = {
|
||||||
|
[](float x) {return 1.0f; }, // Constant, m_iKernel = 0
|
||||||
|
[](float x) {return 1.0f - x; }, // Linear, m_iKernel = 1, as given in the exercise Sheet, x = d/2r
|
||||||
|
[](float x) {return (1.0f - x)*(1.0f - x); }, // Quadratic, m_iKernel = 2
|
||||||
|
[](float x) {return 1.0f / (x)-1.0f; }, // Weak Electric Charge, m_iKernel = 3
|
||||||
|
[](float x) {return 1.0f / (x*x) - 1.0f; }, // Electric Charge, m_iKernel = 4
|
||||||
|
};
|
||||||
|
|
||||||
|
// SphereSystemSimulator member functions
|
||||||
49
Simulations/SphereSystemSimulator.h
Normal file
49
Simulations/SphereSystemSimulator.h
Normal file
@@ -0,0 +1,49 @@
|
|||||||
|
#ifndef SPHSYSTEMSIMULATOR_h
|
||||||
|
#define SPHSYSTEMSIMULATOR_h
|
||||||
|
#include "Simulator.h"
|
||||||
|
//#include "spheresystem.h", add your sphere system header file
|
||||||
|
|
||||||
|
#define NAIVEACC 0
|
||||||
|
#define GRIDACC 1
|
||||||
|
|
||||||
|
class SphereSystemSimulator:public Simulator{
|
||||||
|
public:
|
||||||
|
// Construtors
|
||||||
|
SphereSystemSimulator();
|
||||||
|
// Functions
|
||||||
|
const char * getTestCasesStr();
|
||||||
|
void initUI(DrawingUtilitiesClass * DUC);
|
||||||
|
void reset();
|
||||||
|
void drawFrame(ID3D11DeviceContext* pd3dImmediateContext);
|
||||||
|
void notifyCaseChanged(int testCase);
|
||||||
|
void externalForcesCalculations(float timeElapsed);
|
||||||
|
void simulateTimestep(float timeStep);
|
||||||
|
void onClick(int x, int y);
|
||||||
|
void onMouse(int x, int y);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
// Attributes
|
||||||
|
Vec3 externalForce;
|
||||||
|
Point2D m_mouse;
|
||||||
|
Point2D m_trackmouse;
|
||||||
|
Point2D m_oldtrackmouse;
|
||||||
|
float m_fMass;
|
||||||
|
float m_fRadius;
|
||||||
|
float m_fForceScaling;
|
||||||
|
float m_fDamping;
|
||||||
|
int m_iNumSpheres;
|
||||||
|
|
||||||
|
int m_iKernel; // index of the m_Kernels[5], more detials in SphereSystemSimulator.cpp
|
||||||
|
static std::function<float(float)> m_Kernels[5];
|
||||||
|
|
||||||
|
int m_iAccelerator; // switch between NAIVEACC and GRIDACC, (optionally, KDTREEACC, 2)
|
||||||
|
|
||||||
|
//SphereSystem * m_pSphereSystem; // add your own sphere system member!
|
||||||
|
// for Demo 3 only:
|
||||||
|
// you will need multiple SphereSystem objects to do comparisons in Demo 3
|
||||||
|
// m_iAccelerator should be ignored.
|
||||||
|
// SphereSystem * m_pSphereSystemGrid;
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
||||||
160
Simulations/general.h
Normal file
160
Simulations/general.h
Normal file
@@ -0,0 +1,160 @@
|
|||||||
|
/******************************************************************************
|
||||||
|
*
|
||||||
|
* MantaFlow fluid solver framework
|
||||||
|
* Copyright 2011 Tobias Pfaff, Nils Thuerey
|
||||||
|
*
|
||||||
|
* This program is free software, distributed under the terms of the
|
||||||
|
* GNU General Public License (GPL)
|
||||||
|
* http://www.gnu.org/licenses
|
||||||
|
*
|
||||||
|
* Globally used macros and functions
|
||||||
|
*
|
||||||
|
******************************************************************************/
|
||||||
|
|
||||||
|
#ifndef _GENERAL_H
|
||||||
|
#define _GENERAL_H
|
||||||
|
|
||||||
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <cmath>
|
||||||
|
#include <algorithm>
|
||||||
|
|
||||||
|
namespace Manta {
|
||||||
|
|
||||||
|
// ui data exchange
|
||||||
|
#ifdef GUI
|
||||||
|
// defined in qtmain.cpp
|
||||||
|
extern void updateQtGui(bool full, int frame, float time, const std::string& curPlugin);
|
||||||
|
#else
|
||||||
|
// dummy function if GUI is not enabled
|
||||||
|
inline void updateQtGui(bool full, int frame, float time, const std::string& curPlugin) {}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
// activate debug mode if _DEBUG is defined (eg for windows)
|
||||||
|
#ifndef DEBUG
|
||||||
|
#ifdef _DEBUG
|
||||||
|
#define DEBUG 1
|
||||||
|
#endif // _DEBUG
|
||||||
|
#endif // DEBUG
|
||||||
|
|
||||||
|
// Standard exception
|
||||||
|
class Error : public std::exception
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
Error(const std::string& s) : mS(s) {
|
||||||
|
# ifdef DEBUG
|
||||||
|
// print error
|
||||||
|
std::cerr << "Aborting: "<< s <<" \n";
|
||||||
|
// then force immedieate crash in debug mode
|
||||||
|
*(volatile int*)(0) = 1;
|
||||||
|
# endif
|
||||||
|
}
|
||||||
|
virtual ~Error() throw() {}
|
||||||
|
virtual const char* what() const throw() { return mS.c_str(); }
|
||||||
|
private:
|
||||||
|
std::string mS;
|
||||||
|
};
|
||||||
|
|
||||||
|
// mark unused parameter variables
|
||||||
|
#define unusedParameter(x) ((void)x)
|
||||||
|
|
||||||
|
// Debug output functions and macros
|
||||||
|
extern int gDebugLevel;
|
||||||
|
|
||||||
|
#define MSGSTREAM std::ostringstream msg; msg.precision(7); msg.width(9);
|
||||||
|
#define debMsg(mStr, level) if (_chklevel(level)) { MSGSTREAM; msg << mStr; std::cout << msg.str() << std::endl; }
|
||||||
|
inline bool _chklevel(int level=0) { return gDebugLevel >= level; }
|
||||||
|
|
||||||
|
// error and assertation macros
|
||||||
|
#ifdef DEBUG
|
||||||
|
# define DEBUG_ONLY(a) a
|
||||||
|
#else
|
||||||
|
# define DEBUG_ONLY(a)
|
||||||
|
#endif
|
||||||
|
#define throwError(msg) { std::ostringstream __s; __s << msg << std::endl << "Error raised in " << __FILE__ << ":" << __LINE__; throw Manta::Error(__s.str()); }
|
||||||
|
#define errMsg(msg) throwError(msg);
|
||||||
|
#define assertMsg(cond,msg) if(!(cond)) throwError(msg)
|
||||||
|
#define assertDeb(cond,msg) DEBUG_ONLY( assertMsg(cond,msg) )
|
||||||
|
|
||||||
|
// for compatibility with blender, blender only defines WITH_MANTA, make sure we have "BLENDER"
|
||||||
|
#ifndef BLENDER
|
||||||
|
#ifdef WITH_MANTA
|
||||||
|
#define BLENDER 1
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// common type for indexing large grids
|
||||||
|
typedef long long IndexInt;
|
||||||
|
|
||||||
|
// template tricks
|
||||||
|
template<typename T>
|
||||||
|
struct remove_pointers {
|
||||||
|
typedef T type;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
struct remove_pointers<T*> {
|
||||||
|
typedef T type;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
struct remove_pointers<T&> {
|
||||||
|
typedef T type;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Commonly used enums and types
|
||||||
|
//! Timing class for preformance measuring
|
||||||
|
struct MuTime {
|
||||||
|
MuTime() { get(); }
|
||||||
|
MuTime operator-(const MuTime& a) { MuTime b; b.time = time - a.time; return b; };
|
||||||
|
MuTime operator+(const MuTime& a) { MuTime b; b.time = time + a.time; return b; };
|
||||||
|
MuTime operator/(unsigned long a) { MuTime b; b.time = time / a; return b; };
|
||||||
|
MuTime& operator+=(const MuTime& a) { time += a.time; return *this; }
|
||||||
|
MuTime& operator-=(const MuTime& a) { time -= a.time; return *this; }
|
||||||
|
MuTime& operator/=(unsigned long a) { time /= a; return *this; }
|
||||||
|
std::string toString();
|
||||||
|
|
||||||
|
void clear() { time = 0; }
|
||||||
|
void get();
|
||||||
|
MuTime update();
|
||||||
|
|
||||||
|
unsigned long time;
|
||||||
|
};
|
||||||
|
std::ostream& operator<< (std::ostream& os, const MuTime& t);
|
||||||
|
|
||||||
|
//! generate a string with infos about the current mantaflow build
|
||||||
|
std::string buildInfoString();
|
||||||
|
|
||||||
|
// Some commonly used math helpers
|
||||||
|
template<class T> inline T square(T a) {
|
||||||
|
return a*a;
|
||||||
|
}
|
||||||
|
template<class T> inline T cubed(T a) {
|
||||||
|
return a*a*a;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class T> inline T clamp(const T& val, const T& vmin, const T& vmax) {
|
||||||
|
if (val < vmin) return vmin;
|
||||||
|
if (val > vmax) return vmax;
|
||||||
|
return val;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class T> inline T nmod(const T& a, const T& b);
|
||||||
|
template<> inline int nmod(const int& a, const int& b) { int c=a%b; return (c<0) ? (c+b) : c; }
|
||||||
|
template<> inline float nmod(const float& a, const float& b) { float c=std::fmod(a,b); return (c<0) ? (c+b) : c; }
|
||||||
|
template<> inline double nmod(const double& a, const double& b) { double c=std::fmod(a,b); return (c<0) ? (c+b) : c; }
|
||||||
|
|
||||||
|
template<class T> inline T safeDivide(const T& a, const T& b);
|
||||||
|
template<> inline int safeDivide<int>(const int &a, const int& b) { return (b) ? (a/b) : a; }
|
||||||
|
template<> inline float safeDivide<float>(const float &a, const float& b) { return (b) ? (a/b) : a; }
|
||||||
|
template<> inline double safeDivide<double>(const double &a, const double& b) { return (b) ? (a/b) : a; }
|
||||||
|
|
||||||
|
inline bool c_isnan(float c) {
|
||||||
|
volatile float d=c;
|
||||||
|
return d != d;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
#endif
|
||||||
@@ -20,10 +20,11 @@ using namespace GamePhysics;
|
|||||||
|
|
||||||
//#define ADAPTIVESTEP
|
//#define ADAPTIVESTEP
|
||||||
|
|
||||||
#define TEMPLATE_DEMO
|
//#define TEMPLATE_DEMO
|
||||||
//#define MASS_SPRING_SYSTEM
|
//#define MASS_SPRING_SYSTEM
|
||||||
//#define RIGID_BODY_SYSTEM
|
//#define RIGID_BODY_SYSTEM
|
||||||
//#define SPH_SYSTEM
|
//#define SPH_SYSTEM
|
||||||
|
#define DIFFUSION_SYSTEM
|
||||||
|
|
||||||
#ifdef TEMPLATE_DEMO
|
#ifdef TEMPLATE_DEMO
|
||||||
#include "TemplateSimulator.h"
|
#include "TemplateSimulator.h"
|
||||||
@@ -38,6 +39,10 @@ using namespace GamePhysics;
|
|||||||
//#include "SPHSystemSimulator.h"
|
//#include "SPHSystemSimulator.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifdef DIFFUSION_SYSTEM
|
||||||
|
#include "DiffusionSimulator.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
DrawingUtilitiesClass * g_pDUC;
|
DrawingUtilitiesClass * g_pDUC;
|
||||||
Simulator * g_pSimulator;
|
Simulator * g_pSimulator;
|
||||||
float g_fTimestep = 0.001;
|
float g_fTimestep = 0.001;
|
||||||
@@ -369,6 +374,9 @@ int main(int argc, char* argv[])
|
|||||||
#endif
|
#endif
|
||||||
#ifdef SPH_SYSTEM
|
#ifdef SPH_SYSTEM
|
||||||
//g_pSimulator= new SPHSystemSimulator();
|
//g_pSimulator= new SPHSystemSimulator();
|
||||||
|
#endif
|
||||||
|
#ifdef DIFFUSION_SYSTEM
|
||||||
|
g_pSimulator= new DiffusionSimulator();
|
||||||
#endif
|
#endif
|
||||||
g_pSimulator->reset();
|
g_pSimulator->reset();
|
||||||
|
|
||||||
|
|||||||
750
Simulations/pcgsolver.h
Normal file
750
Simulations/pcgsolver.h
Normal file
@@ -0,0 +1,750 @@
|
|||||||
|
//
|
||||||
|
// Preconditioned conjugate gradient solver
|
||||||
|
//
|
||||||
|
// Created by Robert Bridson, Ryoichi Ando and Nils Thuerey
|
||||||
|
//
|
||||||
|
|
||||||
|
#ifndef RCMATRIX3_H
|
||||||
|
#define RCMATRIX3_H
|
||||||
|
|
||||||
|
#include <iterator>
|
||||||
|
#include <cassert>
|
||||||
|
#include <vector>
|
||||||
|
#include <fstream>
|
||||||
|
#include <cmath>
|
||||||
|
#include <functional>
|
||||||
|
|
||||||
|
// index type
|
||||||
|
#define int_index long long
|
||||||
|
|
||||||
|
// parallelization disabled
|
||||||
|
|
||||||
|
#define parallel_for(size) { int thread_number = 0; int_index parallel_index=0; for( int_index parallel_index=0; parallel_index<(int_index)size; parallel_index++ ) {
|
||||||
|
#define parallel_end } thread_number=parallel_index=0; }
|
||||||
|
|
||||||
|
#define parallel_block
|
||||||
|
#define do_parallel
|
||||||
|
#define do_end
|
||||||
|
#define block_end
|
||||||
|
|
||||||
|
#include "vectorbase.h"
|
||||||
|
|
||||||
|
// note - "Int" instead of "N" here, the latter is size!
|
||||||
|
template<class Int, class T>
|
||||||
|
struct InstantBLAS {
|
||||||
|
static inline Int offset(Int N, Int incX) { return ((incX) > 0 ? 0 : ((N) - 1) * (-(incX))); }
|
||||||
|
static T cblas_ddot( const Int N, const T *X, const Int incX, const T *Y, const Int incY) {
|
||||||
|
double r = 0.0; // always use double precision internally here...
|
||||||
|
Int i;
|
||||||
|
Int ix = offset(N,incX);
|
||||||
|
Int iy = offset(N,incY);
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
r += X[ix] * Y[iy];
|
||||||
|
ix += incX;
|
||||||
|
iy += incY;
|
||||||
|
}
|
||||||
|
return (T)r;
|
||||||
|
}
|
||||||
|
static void cblas_daxpy( const Int N, const T alpha, const T *X, const Int incX, T *Y, const Int incY) {
|
||||||
|
Int i;
|
||||||
|
if (N <= 0 ) return;
|
||||||
|
if (alpha == 0.0) return;
|
||||||
|
if (incX == 1 && incY == 1) {
|
||||||
|
const Int m = N % 4;
|
||||||
|
for (i = 0; i < m; i++)
|
||||||
|
Y[i] += alpha * X[i];
|
||||||
|
for (i = m; i + 3 < N; i += 4) {
|
||||||
|
Y[i ] += alpha * X[i ];
|
||||||
|
Y[i + 1] += alpha * X[i + 1];
|
||||||
|
Y[i + 2] += alpha * X[i + 2];
|
||||||
|
Y[i + 3] += alpha * X[i + 3];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
Int ix = offset(N, incX);
|
||||||
|
Int iy = offset(N, incY);
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
Y[iy] += alpha * X[ix];
|
||||||
|
ix += incX;
|
||||||
|
iy += incY;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// dot products ==============================================================
|
||||||
|
static inline T dot(const std::vector<T> &x, const std::vector<T> &y) {
|
||||||
|
return cblas_ddot((int)x.size(), &x[0], 1, &y[0], 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
// inf-norm (maximum absolute value: index of max returned) ==================
|
||||||
|
static inline Int index_abs_max(const std::vector<T> &x) {
|
||||||
|
int maxind = 0;
|
||||||
|
T maxvalue = 0;
|
||||||
|
for(Int i = 0; i < (Int)x.size(); ++i) {
|
||||||
|
if(std::abs(x[i]) > maxvalue) {
|
||||||
|
maxvalue = fabs(x[i]);
|
||||||
|
maxind = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return maxind;
|
||||||
|
}
|
||||||
|
|
||||||
|
// inf-norm (maximum absolute value) =========================================
|
||||||
|
// technically not part of BLAS, but useful
|
||||||
|
static inline T abs_max(const std::vector<T> &x)
|
||||||
|
{ return std::abs(x[index_abs_max(x)]); }
|
||||||
|
|
||||||
|
// saxpy (y=alpha*x+y) =======================================================
|
||||||
|
static inline void add_scaled(T alpha, const std::vector<T> &x, std::vector<T> &y) {
|
||||||
|
cblas_daxpy((Int)x.size(), alpha, &x[0], 1, &y[0], 1);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
template<class T>
|
||||||
|
void zero(std::vector<T> &v)
|
||||||
|
{ for(int i=(int)v.size()-1; i>=0; --i) v[i]=0; }
|
||||||
|
|
||||||
|
template<class T>
|
||||||
|
void insert(std::vector<T> &a, unsigned int index, T e)
|
||||||
|
{
|
||||||
|
a.push_back(a.back());
|
||||||
|
for(unsigned int i=(unsigned int)a.size()-1; i>index; --i)
|
||||||
|
a[i]=a[i-1];
|
||||||
|
a[index]=e;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class T>
|
||||||
|
void erase(std::vector<T> &a, unsigned int index)
|
||||||
|
{
|
||||||
|
for(unsigned int i=index; i<a.size()-1; ++i)
|
||||||
|
a[i]=a[i+1];
|
||||||
|
a.pop_back();
|
||||||
|
}
|
||||||
|
|
||||||
|
//============================================================================
|
||||||
|
// Dynamic compressed sparse row matrix.
|
||||||
|
|
||||||
|
template<class T>
|
||||||
|
struct SparseMatrix
|
||||||
|
{
|
||||||
|
int n; // dimension
|
||||||
|
std::vector<std::vector<int> > index; // for each row, a list of all column indices (sorted)
|
||||||
|
std::vector<std::vector<T> > value; // values corresponding to index
|
||||||
|
|
||||||
|
explicit SparseMatrix(int n_=0, int expected_nonzeros_per_row=7)
|
||||||
|
: n(n_), index(n_), value(n_)
|
||||||
|
{
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
index[i].reserve(expected_nonzeros_per_row);
|
||||||
|
value[i].reserve(expected_nonzeros_per_row);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void clear(void)
|
||||||
|
{
|
||||||
|
n=0;
|
||||||
|
index.clear();
|
||||||
|
value.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
void zero(void)
|
||||||
|
{
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
index[i].resize(0);
|
||||||
|
value[i].resize(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void resize(int n_)
|
||||||
|
{
|
||||||
|
n=n_;
|
||||||
|
index.resize(n);
|
||||||
|
value.resize(n);
|
||||||
|
}
|
||||||
|
|
||||||
|
T operator()(int i, int j) const
|
||||||
|
{
|
||||||
|
for(int k=0; k<(int)index[i].size(); ++k){
|
||||||
|
if(index[i][k]==j) return value[i][k];
|
||||||
|
else if(index[i][k]>j) return 0;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_element(int i, int j, T new_value)
|
||||||
|
{
|
||||||
|
int k=0;
|
||||||
|
for(; k<(int)index[i].size(); ++k){
|
||||||
|
if(index[i][k]==j){
|
||||||
|
value[i][k]=new_value;
|
||||||
|
return;
|
||||||
|
}else if(index[i][k]>j){
|
||||||
|
insert(index[i], k, j);
|
||||||
|
insert(value[i], k, new_value);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
index[i].push_back(j);
|
||||||
|
value[i].push_back(new_value);
|
||||||
|
}
|
||||||
|
|
||||||
|
void add_to_element(int i, int j, T increment_value)
|
||||||
|
{
|
||||||
|
int k=0;
|
||||||
|
for(; k<(int)index[i].size(); ++k){
|
||||||
|
if(index[i][k]==j){
|
||||||
|
value[i][k]+=increment_value;
|
||||||
|
return;
|
||||||
|
}else if(index[i][k]>j){
|
||||||
|
insert(index[i], k, j);
|
||||||
|
insert(value[i], k, increment_value);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
index[i].push_back(j);
|
||||||
|
value[i].push_back(increment_value);
|
||||||
|
}
|
||||||
|
|
||||||
|
// assumes indices is already sorted
|
||||||
|
void add_sparse_row(int i, const std::vector<int> &indices, const std::vector<T> &values)
|
||||||
|
{
|
||||||
|
int j=0, k=0;
|
||||||
|
while(j<indices.size() && k<(int)index[i].size()){
|
||||||
|
if(index[i][k]<indices[j]){
|
||||||
|
++k;
|
||||||
|
}else if(index[i][k]>indices[j]){
|
||||||
|
insert(index[i], k, indices[j]);
|
||||||
|
insert(value[i], k, values[j]);
|
||||||
|
++j;
|
||||||
|
}else{
|
||||||
|
value[i][k]+=values[j];
|
||||||
|
++j;
|
||||||
|
++k;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for(;j<indices.size(); ++j){
|
||||||
|
index[i].push_back(indices[j]);
|
||||||
|
value[i].push_back(values[j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// assumes matrix has symmetric structure - so the indices in row i tell us which columns to delete i from
|
||||||
|
void symmetric_remove_row_and_column(int i)
|
||||||
|
{
|
||||||
|
for(int a=0; a<index[i].size(); ++a){
|
||||||
|
int j=index[i][a]; //
|
||||||
|
for(int b=0; b<index[j].size(); ++b){
|
||||||
|
if(index[j][b]==i){
|
||||||
|
erase(index[j], b);
|
||||||
|
erase(value[j], b);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
index[i].resize(0);
|
||||||
|
value[i].resize(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_matlab(std::ostream &output, const char *variable_name)
|
||||||
|
{
|
||||||
|
output<<variable_name<<"=sparse([";
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
for(int j=0; j<index[i].size(); ++j){
|
||||||
|
output<<i+1<<" ";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output<<"],...\n [";
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
for(int j=0; j<index[i].size(); ++j){
|
||||||
|
output<<index[i][j]+1<<" ";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output<<"],...\n [";
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
for(int j=0; j<value[i].size(); ++j){
|
||||||
|
output<<value[i][j]<<" ";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output<<"], "<<n<<", "<<n<<");"<<std::endl;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef SparseMatrix<float> SparseMatrixf;
|
||||||
|
typedef SparseMatrix<double> SparseMatrixd;
|
||||||
|
|
||||||
|
// perform result=matrix*x
|
||||||
|
template<class T>
|
||||||
|
void multiply(const SparseMatrix<T> &matrix, const std::vector<T> &x, std::vector<T> &result)
|
||||||
|
{
|
||||||
|
assert(matrix.n==x.size());
|
||||||
|
result.resize(matrix.n);
|
||||||
|
//for(int i=0; i<matrix.n; ++i)
|
||||||
|
parallel_for(matrix.n) {
|
||||||
|
unsigned i (parallel_index);
|
||||||
|
T value=0;
|
||||||
|
for(int j=0; j<(int)matrix.index[i].size(); ++j){
|
||||||
|
value+=matrix.value[i][j]*x[matrix.index[i][j]];
|
||||||
|
}
|
||||||
|
result[i]=value;
|
||||||
|
} parallel_end
|
||||||
|
}
|
||||||
|
|
||||||
|
// perform result=result-matrix*x
|
||||||
|
template<class T>
|
||||||
|
void multiply_and_subtract(const SparseMatrix<T> &matrix, const std::vector<T> &x, std::vector<T> &result)
|
||||||
|
{
|
||||||
|
assert(matrix.n==x.size());
|
||||||
|
result.resize(matrix.n);
|
||||||
|
for(int i=0; i<(int)matrix.n; ++i){
|
||||||
|
for(int j=0; j<(int)matrix.index[i].size(); ++j){
|
||||||
|
result[i]-=matrix.value[i][j]*x[matrix.index[i][j]];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//============================================================================
|
||||||
|
// Fixed version of SparseMatrix. This is not a good structure for dynamically
|
||||||
|
// modifying the matrix, but can be significantly faster for matrix-vector
|
||||||
|
// multiplies due to better data locality.
|
||||||
|
|
||||||
|
template<class T>
|
||||||
|
struct FixedSparseMatrix
|
||||||
|
{
|
||||||
|
int n; // dimension
|
||||||
|
std::vector<T> value; // nonzero values row by row
|
||||||
|
std::vector<int> colindex; // corresponding column indices
|
||||||
|
std::vector<int> rowstart; // where each row starts in value and colindex (and last entry is one past the end, the number of nonzeros)
|
||||||
|
|
||||||
|
explicit FixedSparseMatrix(int n_=0)
|
||||||
|
: n(n_), value(0), colindex(0), rowstart(n_+1)
|
||||||
|
{}
|
||||||
|
|
||||||
|
void clear(void)
|
||||||
|
{
|
||||||
|
n=0;
|
||||||
|
value.clear();
|
||||||
|
colindex.clear();
|
||||||
|
rowstart.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
void resize(int n_)
|
||||||
|
{
|
||||||
|
n=n_;
|
||||||
|
rowstart.resize(n+1);
|
||||||
|
}
|
||||||
|
|
||||||
|
void construct_from_matrix(const SparseMatrix<T> &matrix)
|
||||||
|
{
|
||||||
|
resize(matrix.n);
|
||||||
|
rowstart[0]=0;
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
rowstart[i+1]=rowstart[i]+matrix.index[i].size();
|
||||||
|
}
|
||||||
|
value.resize(rowstart[n]);
|
||||||
|
colindex.resize(rowstart[n]);
|
||||||
|
int j=0;
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
for(int k=0; k<(int)matrix.index[i].size(); ++k){
|
||||||
|
value[j]=matrix.value[i][k];
|
||||||
|
colindex[j]=matrix.index[i][k];
|
||||||
|
++j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_matlab(std::ostream &output, const char *variable_name)
|
||||||
|
{
|
||||||
|
output<<variable_name<<"=sparse([";
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
for(int j=rowstart[i]; j<rowstart[i+1]; ++j){
|
||||||
|
output<<i+1<<" ";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output<<"],...\n [";
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
for(int j=rowstart[i]; j<rowstart[i+1]; ++j){
|
||||||
|
output<<colindex[j]+1<<" ";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output<<"],...\n [";
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
for(int j=rowstart[i]; j<rowstart[i+1]; ++j){
|
||||||
|
output<<value[j]<<" ";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output<<"], "<<n<<", "<<n<<");"<<std::endl;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// perform result=matrix*x
|
||||||
|
template<class T>
|
||||||
|
void multiply(const FixedSparseMatrix<T> &matrix, const std::vector<T> &x, std::vector<T> &result)
|
||||||
|
{
|
||||||
|
assert(matrix.n==x.size());
|
||||||
|
result.resize(matrix.n);
|
||||||
|
//for(int i=0; i<matrix.n; ++i)
|
||||||
|
parallel_for(matrix.n) {
|
||||||
|
unsigned i (parallel_index);
|
||||||
|
T value=0;
|
||||||
|
for(int j=matrix.rowstart[i]; j<matrix.rowstart[i+1]; ++j){
|
||||||
|
value+=matrix.value[j]*x[matrix.colindex[j]];
|
||||||
|
}
|
||||||
|
result[i]=value;
|
||||||
|
} parallel_end
|
||||||
|
}
|
||||||
|
|
||||||
|
// perform result=result-matrix*x
|
||||||
|
template<class T>
|
||||||
|
void multiply_and_subtract(const FixedSparseMatrix<T> &matrix, const std::vector<T> &x, std::vector<T> &result)
|
||||||
|
{
|
||||||
|
assert(matrix.n==x.size());
|
||||||
|
result.resize(matrix.n);
|
||||||
|
for(int i=0; i<matrix.n; ++i){
|
||||||
|
for(int j=matrix.rowstart[i]; j<matrix.rowstart[i+1]; ++j){
|
||||||
|
result[i]-=matrix.value[j]*x[matrix.colindex[j]];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//============================================================================
|
||||||
|
// A simple compressed sparse column data structure (with separate diagonal)
|
||||||
|
// for lower triangular matrices
|
||||||
|
|
||||||
|
template<class T>
|
||||||
|
struct SparseColumnLowerFactor
|
||||||
|
{
|
||||||
|
int n;
|
||||||
|
std::vector<T> invdiag; // reciprocals of diagonal elements
|
||||||
|
std::vector<T> value; // values below the diagonal, listed column by column
|
||||||
|
std::vector<int> rowindex; // a list of all row indices, for each column in turn
|
||||||
|
std::vector<int> colstart; // where each column begins in rowindex (plus an extra entry at the end, of #nonzeros)
|
||||||
|
std::vector<T> adiag; // just used in factorization: minimum "safe" diagonal entry allowed
|
||||||
|
|
||||||
|
explicit SparseColumnLowerFactor(int n_=0)
|
||||||
|
: n(n_), invdiag(n_), colstart(n_+1), adiag(n_)
|
||||||
|
{}
|
||||||
|
|
||||||
|
void clear(void)
|
||||||
|
{
|
||||||
|
n=0;
|
||||||
|
invdiag.clear();
|
||||||
|
value.clear();
|
||||||
|
rowindex.clear();
|
||||||
|
colstart.clear();
|
||||||
|
adiag.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
void resize(int n_)
|
||||||
|
{
|
||||||
|
n=n_;
|
||||||
|
invdiag.resize(n);
|
||||||
|
colstart.resize(n+1);
|
||||||
|
adiag.resize(n);
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_matlab(std::ostream &output, const char *variable_name)
|
||||||
|
{
|
||||||
|
output<<variable_name<<"=sparse([";
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
output<<" "<<i+1;
|
||||||
|
for(int j=colstart[i]; j<colstart[i+1]; ++j){
|
||||||
|
output<<" "<<rowindex[j]+1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output<<"],...\n [";
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
output<<" "<<i+1;
|
||||||
|
for(int j=colstart[i]; j<colstart[i+1]; ++j){
|
||||||
|
output<<" "<<i+1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output<<"],...\n [";
|
||||||
|
for(int i=0; i<n; ++i){
|
||||||
|
output<<" "<<(invdiag[i]!=0 ? 1/invdiag[i] : 0);
|
||||||
|
for(int j=colstart[i]; j<colstart[i+1]; ++j){
|
||||||
|
output<<" "<<value[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output<<"], "<<n<<", "<<n<<");"<<std::endl;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
//============================================================================
|
||||||
|
// Incomplete Cholesky factorization, level zero, with option for modified version.
|
||||||
|
// Set modification_parameter between zero (regular incomplete Cholesky) and
|
||||||
|
// one (fully modified version), with values close to one usually giving the best
|
||||||
|
// results. The min_diagonal_ratio parameter is used to detect and correct
|
||||||
|
// problems in factorization: if a pivot is this much less than the diagonal
|
||||||
|
// entry from the original matrix, the original matrix entry is used instead.
|
||||||
|
|
||||||
|
template<class T>
|
||||||
|
void factor_modified_incomplete_cholesky0(const SparseMatrix<T> &matrix, SparseColumnLowerFactor<T> &factor,
|
||||||
|
T modification_parameter=0.97, T min_diagonal_ratio=0.25)
|
||||||
|
{
|
||||||
|
// first copy lower triangle of matrix into factor (Note: assuming A is symmetric of course!)
|
||||||
|
factor.resize(matrix.n);
|
||||||
|
zero(factor.invdiag); // important: eliminate old values from previous solves!
|
||||||
|
factor.value.resize(0);
|
||||||
|
factor.rowindex.resize(0);
|
||||||
|
zero(factor.adiag);
|
||||||
|
for(int i=0; i<matrix.n; ++i){
|
||||||
|
factor.colstart[i]=(int)factor.rowindex.size();
|
||||||
|
for(int j=0; j<(int)matrix.index[i].size(); ++j){
|
||||||
|
if(matrix.index[i][j]>i){
|
||||||
|
factor.rowindex.push_back(matrix.index[i][j]);
|
||||||
|
factor.value.push_back(matrix.value[i][j]);
|
||||||
|
}else if(matrix.index[i][j]==i){
|
||||||
|
factor.invdiag[i]=factor.adiag[i]=matrix.value[i][j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
factor.colstart[matrix.n]=(int)factor.rowindex.size();
|
||||||
|
// now do the incomplete factorization (figure out numerical values)
|
||||||
|
|
||||||
|
// MATLAB code:
|
||||||
|
// L=tril(A);
|
||||||
|
// for k=1:size(L,2)
|
||||||
|
// L(k,k)=sqrt(L(k,k));
|
||||||
|
// L(k+1:end,k)=L(k+1:end,k)/L(k,k);
|
||||||
|
// for j=find(L(:,k))'
|
||||||
|
// if j>k
|
||||||
|
// fullupdate=L(:,k)*L(j,k);
|
||||||
|
// incompleteupdate=fullupdate.*(A(:,j)~=0);
|
||||||
|
// missing=sum(fullupdate-incompleteupdate);
|
||||||
|
// L(j:end,j)=L(j:end,j)-incompleteupdate(j:end);
|
||||||
|
// L(j,j)=L(j,j)-omega*missing;
|
||||||
|
// end
|
||||||
|
// end
|
||||||
|
// end
|
||||||
|
|
||||||
|
for(int k=0; k<matrix.n; ++k){
|
||||||
|
if(factor.adiag[k]==0) continue; // null row/column
|
||||||
|
// figure out the final L(k,k) entry
|
||||||
|
if(factor.invdiag[k]<min_diagonal_ratio*factor.adiag[k])
|
||||||
|
factor.invdiag[k]=1/sqrt(factor.adiag[k]); // drop to Gauss-Seidel here if the pivot looks dangerously small
|
||||||
|
else
|
||||||
|
factor.invdiag[k]=1/sqrt(factor.invdiag[k]);
|
||||||
|
// finalize the k'th column L(:,k)
|
||||||
|
for(int p=factor.colstart[k]; p<factor.colstart[k+1]; ++p){
|
||||||
|
factor.value[p]*=factor.invdiag[k];
|
||||||
|
}
|
||||||
|
// incompletely eliminate L(:,k) from future columns, modifying diagonals
|
||||||
|
for(int p=factor.colstart[k]; p<factor.colstart[k+1]; ++p){
|
||||||
|
int j=factor.rowindex[p]; // work on column j
|
||||||
|
T multiplier=factor.value[p];
|
||||||
|
T missing=0;
|
||||||
|
int a=factor.colstart[k];
|
||||||
|
// first look for contributions to missing from dropped entries above the diagonal in column j
|
||||||
|
int b=0;
|
||||||
|
while(a<factor.colstart[k+1] && factor.rowindex[a]<j){
|
||||||
|
// look for factor.rowindex[a] in matrix.index[j] starting at b
|
||||||
|
while(b<(int)matrix.index[j].size()){
|
||||||
|
if(matrix.index[j][b]<factor.rowindex[a])
|
||||||
|
++b;
|
||||||
|
else if(matrix.index[j][b]==factor.rowindex[a])
|
||||||
|
break;
|
||||||
|
else{
|
||||||
|
missing+=factor.value[a];
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
++a;
|
||||||
|
}
|
||||||
|
// adjust the diagonal j,j entry
|
||||||
|
if(a<factor.colstart[k+1] && factor.rowindex[a]==j){
|
||||||
|
factor.invdiag[j]-=multiplier*factor.value[a];
|
||||||
|
}
|
||||||
|
++a;
|
||||||
|
// and now eliminate from the nonzero entries below the diagonal in column j (or add to missing if we can't)
|
||||||
|
b=factor.colstart[j];
|
||||||
|
while(a<factor.colstart[k+1] && b<factor.colstart[j+1]){
|
||||||
|
if(factor.rowindex[b]<factor.rowindex[a])
|
||||||
|
++b;
|
||||||
|
else if(factor.rowindex[b]==factor.rowindex[a]){
|
||||||
|
factor.value[b]-=multiplier*factor.value[a];
|
||||||
|
++a;
|
||||||
|
++b;
|
||||||
|
}else{
|
||||||
|
missing+=factor.value[a];
|
||||||
|
++a;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// and if there's anything left to do, add it to missing
|
||||||
|
while(a<factor.colstart[k+1]){
|
||||||
|
missing+=factor.value[a];
|
||||||
|
++a;
|
||||||
|
}
|
||||||
|
// and do the final diagonal adjustment from the missing entries
|
||||||
|
factor.invdiag[j]-=modification_parameter*multiplier*missing;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//============================================================================
|
||||||
|
// Solution routines with lower triangular matrix.
|
||||||
|
|
||||||
|
// solve L*result=rhs
|
||||||
|
template<class T>
|
||||||
|
void solve_lower(const SparseColumnLowerFactor<T> &factor, const std::vector<T> &rhs, std::vector<T> &result)
|
||||||
|
{
|
||||||
|
assert(factor.n==rhs.size());
|
||||||
|
assert(factor.n==result.size());
|
||||||
|
result=rhs;
|
||||||
|
for(int i=0; i<factor.n; ++i){
|
||||||
|
result[i]*=factor.invdiag[i];
|
||||||
|
for(int j=factor.colstart[i]; j<factor.colstart[i+1]; ++j){
|
||||||
|
result[factor.rowindex[j]]-=factor.value[j]*result[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// solve L^T*result=rhs
|
||||||
|
template<class T>
|
||||||
|
void solve_lower_transpose_in_place(const SparseColumnLowerFactor<T> &factor, std::vector<T> &x)
|
||||||
|
{
|
||||||
|
assert(factor.n==(int)x.size());
|
||||||
|
assert(factor.n>0);
|
||||||
|
int i=factor.n;
|
||||||
|
do{
|
||||||
|
--i;
|
||||||
|
for(int j=factor.colstart[i]; j<factor.colstart[i+1]; ++j){
|
||||||
|
x[i]-=factor.value[j]*x[factor.rowindex[j]];
|
||||||
|
}
|
||||||
|
x[i]*=factor.invdiag[i];
|
||||||
|
}while(i!=0);
|
||||||
|
}
|
||||||
|
|
||||||
|
//============================================================================
|
||||||
|
// Encapsulates the Conjugate Gradient algorithm with incomplete Cholesky
|
||||||
|
// factorization preconditioner.
|
||||||
|
|
||||||
|
template <class T>
|
||||||
|
struct SparsePCGSolver
|
||||||
|
{
|
||||||
|
SparsePCGSolver(void)
|
||||||
|
{
|
||||||
|
set_solver_parameters(1e-5, 100, 0.97, 0.25);
|
||||||
|
}
|
||||||
|
|
||||||
|
void set_solver_parameters(T tolerance_factor_, int max_iterations_, T modified_incomplete_cholesky_parameter_=0.97, T min_diagonal_ratio_=0.25)
|
||||||
|
{
|
||||||
|
tolerance_factor=tolerance_factor_;
|
||||||
|
if(tolerance_factor<1e-30) tolerance_factor=1e-30;
|
||||||
|
max_iterations=max_iterations_;
|
||||||
|
modified_incomplete_cholesky_parameter=modified_incomplete_cholesky_parameter_;
|
||||||
|
min_diagonal_ratio=min_diagonal_ratio_;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool solve(const SparseMatrix<T> &matrix, const std::vector<T> &rhs, std::vector<T> &result, T &relative_residual_out, int &iterations_out, int precondition=2)
|
||||||
|
{
|
||||||
|
int n=matrix.n;
|
||||||
|
if((int)m.size()!=n){ m.resize(n); s.resize(n); z.resize(n); r.resize(n); }
|
||||||
|
zero(result);
|
||||||
|
r=rhs;
|
||||||
|
double residual_out=InstantBLAS<int,T>::abs_max(r);
|
||||||
|
if(residual_out==0) {
|
||||||
|
iterations_out=0;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
//double tol=tolerance_factor*residual_out; // relative residual
|
||||||
|
double tol=tolerance_factor;
|
||||||
|
double residual_0 = residual_out;
|
||||||
|
|
||||||
|
form_preconditioner(matrix, precondition);
|
||||||
|
apply_preconditioner( r, z, precondition);
|
||||||
|
double rho=InstantBLAS<int,T>::dot(z, r);
|
||||||
|
if(rho==0 || rho!=rho) {
|
||||||
|
iterations_out=0;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
s=z;
|
||||||
|
fixed_matrix.construct_from_matrix(matrix);
|
||||||
|
int iteration;
|
||||||
|
for(iteration=0; iteration<max_iterations; ++iteration){
|
||||||
|
multiply(fixed_matrix, s, z);
|
||||||
|
double alpha=rho/InstantBLAS<int,T>::dot(s, z);
|
||||||
|
InstantBLAS<int,T>::add_scaled(alpha, s, result);
|
||||||
|
InstantBLAS<int,T>::add_scaled(-alpha, z, r);
|
||||||
|
residual_out=InstantBLAS<int,T>::abs_max(r);
|
||||||
|
relative_residual_out = residual_out / residual_0;
|
||||||
|
if(residual_out<=tol) {
|
||||||
|
iterations_out=iteration+1;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
apply_preconditioner(r, z, precondition);
|
||||||
|
double rho_new=InstantBLAS<int,T>::dot(z, r);
|
||||||
|
double beta=rho_new/rho;
|
||||||
|
InstantBLAS<int,T>::add_scaled(beta, s, z); s.swap(z); // s=beta*s+z
|
||||||
|
rho=rho_new;
|
||||||
|
}
|
||||||
|
iterations_out=iteration;
|
||||||
|
relative_residual_out = residual_out / residual_0;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
|
||||||
|
// internal structures
|
||||||
|
SparseColumnLowerFactor<T> ic_factor; // modified incomplete cholesky factor
|
||||||
|
std::vector<T> m, z, s, r; // temporary vectors for PCG
|
||||||
|
FixedSparseMatrix<T> fixed_matrix; // used within loop
|
||||||
|
|
||||||
|
// parameters
|
||||||
|
T tolerance_factor;
|
||||||
|
int max_iterations;
|
||||||
|
T modified_incomplete_cholesky_parameter;
|
||||||
|
T min_diagonal_ratio;
|
||||||
|
|
||||||
|
void form_preconditioner(const SparseMatrix<T>& matrix, int precondition=2)
|
||||||
|
{
|
||||||
|
if(precondition==2) {
|
||||||
|
// incomplete cholesky
|
||||||
|
factor_modified_incomplete_cholesky0(matrix, ic_factor, modified_incomplete_cholesky_parameter, min_diagonal_ratio);
|
||||||
|
|
||||||
|
} else if(precondition==1) {
|
||||||
|
// diagonal
|
||||||
|
ic_factor.resize(matrix.n);
|
||||||
|
zero(ic_factor.invdiag);
|
||||||
|
for(int i=0; i<matrix.n; ++i) {
|
||||||
|
for(int j=0; j<(int)matrix.index[i].size(); ++j){
|
||||||
|
if(matrix.index[i][j]==i){
|
||||||
|
ic_factor.invdiag[i] = 1./matrix.value[i][j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void apply_preconditioner(const std::vector<T> &x, std::vector<T> &result, int precondition=2)
|
||||||
|
{
|
||||||
|
if (precondition==2) {
|
||||||
|
// incomplete cholesky
|
||||||
|
solve_lower(ic_factor, x, result);
|
||||||
|
solve_lower_transpose_in_place(ic_factor,result);
|
||||||
|
} else if(precondition==1) {
|
||||||
|
// diagonal
|
||||||
|
for(int_index i=0; i<(int_index)result.size(); ++i) {
|
||||||
|
result[i] = x[i] * ic_factor.invdiag[i];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// off
|
||||||
|
result = x;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#undef parallel_for
|
||||||
|
#undef parallel_end
|
||||||
|
#undef int_index
|
||||||
|
|
||||||
|
#undef parallel_block
|
||||||
|
#undef do_parallel
|
||||||
|
#undef do_end
|
||||||
|
#undef block_end
|
||||||
|
|
||||||
|
#endif
|
||||||
@@ -83,7 +83,7 @@ public:
|
|||||||
inline const Quaternion operator*=(const Quaternion &q)
|
inline const Quaternion operator*=(const Quaternion &q)
|
||||||
{
|
{
|
||||||
vector3Dim<Scalar> v1(x,y,z), v2(q.x,q.y,q.z);
|
vector3Dim<Scalar> v1(x,y,z), v2(q.x,q.y,q.z);
|
||||||
vector3Dim<Scalar> nv = v1*q.w + v2*w + cross(v2,v1);
|
vector3Dim<Scalar> nv = v1*q.w + v2*w + cross(v1,v2);
|
||||||
Scalar nw = w*q.w - (v1.x*v2.x+v1.y*v2.y+v1.z*v2.z);
|
Scalar nw = w*q.w - (v1.x*v2.x+v1.y*v2.y+v1.z*v2.z);
|
||||||
x = nv.x;
|
x = nv.x;
|
||||||
y = nv.y;
|
y = nv.y;
|
||||||
@@ -106,7 +106,7 @@ public:
|
|||||||
inline const Quaternion operator*(const Quaternion &q) const
|
inline const Quaternion operator*(const Quaternion &q) const
|
||||||
{
|
{
|
||||||
vector3Dim<Scalar> v1(x,y,z), v2(q.x,q.y,q.z);
|
vector3Dim<Scalar> v1(x,y,z), v2(q.x,q.y,q.z);
|
||||||
vector3Dim<Scalar> nv = v1*q.w + v2*w + cross(v2,v1);
|
vector3Dim<Scalar> nv = v1*q.w + v2*w + cross(v1,v2);
|
||||||
Scalar nw = w*q.w - (v1.x*v2.x+v1.y*v2.y+v1.z*v2.z);
|
Scalar nw = w*q.w - (v1.x*v2.x+v1.y*v2.y+v1.z*v2.z);
|
||||||
|
|
||||||
return Quaternion(nv.x,nv.y,nv.z,nw);
|
return Quaternion(nv.x,nv.y,nv.z,nw);
|
||||||
|
|||||||
@@ -14,29 +14,29 @@ namespace GamePhysics
|
|||||||
|
|
||||||
// basic inlined vector class
|
// basic inlined vector class
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
class ntlVector4Dim
|
class vector4Dim
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
//! Constructor
|
//! Constructor
|
||||||
inline ntlVector4Dim() : x(0),y(0),z(0),t(0) {}
|
inline vector4Dim() : x(0),y(0),z(0),t(0) {}
|
||||||
|
|
||||||
//! Copy-Constructor
|
//! Copy-Constructor
|
||||||
inline ntlVector4Dim ( const ntlVector4Dim<Scalar> &v ) : x(v.x), y(v.y), z(v.z),t(v.t) {}
|
inline vector4Dim ( const vector4Dim<Scalar> &v ) : x(v.x), y(v.y), z(v.z),t(v.t) {}
|
||||||
|
|
||||||
//! Copy-Constructor
|
//! Copy-Constructor
|
||||||
inline ntlVector4Dim ( const float * v) : x((Scalar)v[0]), y((Scalar)v[1]), z((Scalar)v[2]), t((Scalar)v[3]) {}
|
inline vector4Dim ( const float * v) : x((Scalar)v[0]), y((Scalar)v[1]), z((Scalar)v[2]), t((Scalar)v[3]) {}
|
||||||
|
|
||||||
//! Copy-Constructor
|
//! Copy-Constructor
|
||||||
inline ntlVector4Dim ( const double * v) : x((Scalar)v[0]), y((Scalar)v[1]), z((Scalar)v[2]), t((Scalar)v[3]) {}
|
inline vector4Dim ( const double * v) : x((Scalar)v[0]), y((Scalar)v[1]), z((Scalar)v[2]), t((Scalar)v[3]) {}
|
||||||
|
|
||||||
//! Construct a vector from one Scalar
|
//! Construct a vector from one Scalar
|
||||||
inline ntlVector4Dim ( Scalar v) : x(v), y(v), z(v), t(v) {}
|
inline vector4Dim ( Scalar v) : x(v), y(v), z(v), t(v) {}
|
||||||
|
|
||||||
//! Construct a vector from four Ss
|
//! Construct a vector from four Ss
|
||||||
inline ntlVector4Dim ( Scalar vx, Scalar vy, Scalar vz, Scalar vw) : x(vx), y(vy), z(vz), t(vw) {}
|
inline vector4Dim ( Scalar vx, Scalar vy, Scalar vz, Scalar vw) : x(vx), y(vy), z(vz), t(vw) {}
|
||||||
|
|
||||||
//! Construct a vector from four Ss
|
//! Construct a vector from four Ss
|
||||||
//inline ntlVector4Dim(DirectX::XMVECTOR &v ); // TODO CHECK!
|
//inline vector4Dim(DirectX::XMVECTOR &v ); // TODO CHECK!
|
||||||
|
|
||||||
// get address of array for OpenGL
|
// get address of array for OpenGL
|
||||||
Scalar *getAddress() { return value; }
|
Scalar *getAddress() { return value; }
|
||||||
@@ -44,7 +44,7 @@ public:
|
|||||||
// Operators
|
// Operators
|
||||||
|
|
||||||
//! Assignment operator
|
//! Assignment operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator= ( const ntlVector4Dim<Scalar>& v ) {
|
inline const vector4Dim<Scalar>& operator= ( const vector4Dim<Scalar>& v ) {
|
||||||
x = v.x;
|
x = v.x;
|
||||||
y = v.y;
|
y = v.y;
|
||||||
z = v.z;
|
z = v.z;
|
||||||
@@ -52,12 +52,12 @@ public:
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
//! Assignment operator
|
//! Assignment operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator= ( Scalar s ) {
|
inline const vector4Dim<Scalar>& operator= ( Scalar s ) {
|
||||||
x = y = z = t = s;
|
x = y = z = t = s;
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
//! Assign and add operator
|
//! Assign and add operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator+= ( const ntlVector4Dim<Scalar>& v ) {
|
inline const vector4Dim<Scalar>& operator+= ( const vector4Dim<Scalar>& v ) {
|
||||||
x += v.x;
|
x += v.x;
|
||||||
y += v.y;
|
y += v.y;
|
||||||
z += v.z;
|
z += v.z;
|
||||||
@@ -65,7 +65,7 @@ public:
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
//! Assign and add operator
|
//! Assign and add operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator+= ( Scalar s ) {
|
inline const vector4Dim<Scalar>& operator+= ( Scalar s ) {
|
||||||
x += s;
|
x += s;
|
||||||
y += s;
|
y += s;
|
||||||
z += s;
|
z += s;
|
||||||
@@ -73,7 +73,7 @@ public:
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
//! Assign and sub operator
|
//! Assign and sub operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator-= ( const ntlVector4Dim<Scalar>& v ) {
|
inline const vector4Dim<Scalar>& operator-= ( const vector4Dim<Scalar>& v ) {
|
||||||
x -= v.x;
|
x -= v.x;
|
||||||
y -= v.y;
|
y -= v.y;
|
||||||
z -= v.z;
|
z -= v.z;
|
||||||
@@ -81,7 +81,7 @@ public:
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
//! Assign and sub operator
|
//! Assign and sub operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator-= ( Scalar s ) {
|
inline const vector4Dim<Scalar>& operator-= ( Scalar s ) {
|
||||||
x -= s;
|
x -= s;
|
||||||
y -= s;
|
y -= s;
|
||||||
z -= s;
|
z -= s;
|
||||||
@@ -89,7 +89,7 @@ public:
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
//! Assign and mult operator
|
//! Assign and mult operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator*= ( const ntlVector4Dim<Scalar>& v ) {
|
inline const vector4Dim<Scalar>& operator*= ( const vector4Dim<Scalar>& v ) {
|
||||||
x *= v.x;
|
x *= v.x;
|
||||||
y *= v.y;
|
y *= v.y;
|
||||||
z *= v.z;
|
z *= v.z;
|
||||||
@@ -97,7 +97,7 @@ public:
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
//! Assign and mult operator
|
//! Assign and mult operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator*= ( Scalar s ) {
|
inline const vector4Dim<Scalar>& operator*= ( Scalar s ) {
|
||||||
x *= s;
|
x *= s;
|
||||||
y *= s;
|
y *= s;
|
||||||
z *= s;
|
z *= s;
|
||||||
@@ -105,7 +105,7 @@ public:
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
//! Assign and div operator
|
//! Assign and div operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator/= ( const ntlVector4Dim<Scalar>& v ) {
|
inline const vector4Dim<Scalar>& operator/= ( const vector4Dim<Scalar>& v ) {
|
||||||
x /= v.x;
|
x /= v.x;
|
||||||
y /= v.y;
|
y /= v.y;
|
||||||
z /= v.z;
|
z /= v.z;
|
||||||
@@ -113,7 +113,7 @@ public:
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
//! Assign and div operator
|
//! Assign and div operator
|
||||||
inline const ntlVector4Dim<Scalar>& operator/= ( Scalar s ) {
|
inline const vector4Dim<Scalar>& operator/= ( Scalar s ) {
|
||||||
x /= s;
|
x /= s;
|
||||||
y /= s;
|
y /= s;
|
||||||
z /= s;
|
z /= s;
|
||||||
@@ -121,29 +121,29 @@ public:
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void safeDivide (const ntlVector4Dim<Scalar>& v);
|
inline void safeDivide (const vector4Dim<Scalar>& v);
|
||||||
|
|
||||||
//! Negation operator
|
//! Negation operator
|
||||||
inline ntlVector4Dim<Scalar> operator- () const {
|
inline vector4Dim<Scalar> operator- () const {
|
||||||
return ntlVector4Dim<Scalar> (-x, -y, -z, -t);
|
return vector4Dim<Scalar> (-x, -y, -z, -t);
|
||||||
}
|
}
|
||||||
|
|
||||||
// binary operator add
|
// binary operator add
|
||||||
inline ntlVector4Dim<Scalar> operator+ (const ntlVector4Dim<Scalar>&) const;
|
inline vector4Dim<Scalar> operator+ (const vector4Dim<Scalar>&) const;
|
||||||
// binary operator add
|
// binary operator add
|
||||||
inline ntlVector4Dim<Scalar> operator+ (Scalar) const;
|
inline vector4Dim<Scalar> operator+ (Scalar) const;
|
||||||
// binary operator sub
|
// binary operator sub
|
||||||
inline ntlVector4Dim<Scalar> operator- (const ntlVector4Dim<Scalar>&) const;
|
inline vector4Dim<Scalar> operator- (const vector4Dim<Scalar>&) const;
|
||||||
// binary operator sub
|
// binary operator sub
|
||||||
inline ntlVector4Dim<Scalar> operator- (Scalar) const;
|
inline vector4Dim<Scalar> operator- (Scalar) const;
|
||||||
// binary operator mult
|
// binary operator mult
|
||||||
inline ntlVector4Dim<Scalar> operator* (const ntlVector4Dim<Scalar>&) const;
|
inline vector4Dim<Scalar> operator* (const vector4Dim<Scalar>&) const;
|
||||||
// binary operator mult
|
// binary operator mult
|
||||||
inline ntlVector4Dim<Scalar> operator* (Scalar) const;
|
inline vector4Dim<Scalar> operator* (Scalar) const;
|
||||||
// binary operator div
|
// binary operator div
|
||||||
inline ntlVector4Dim<Scalar> operator/ (const ntlVector4Dim<Scalar>&) const;
|
inline vector4Dim<Scalar> operator/ (const vector4Dim<Scalar>&) const;
|
||||||
// binary operator div
|
// binary operator div
|
||||||
inline ntlVector4Dim<Scalar> operator/ (Scalar) const;
|
inline vector4Dim<Scalar> operator/ (Scalar) const;
|
||||||
|
|
||||||
//! Get smallest component
|
//! Get smallest component
|
||||||
//inline Scalar min() const { return ( x<y ) ? ( ( x<z ) ? x:z ) : ( ( y<z ) ? y:z ); // todo t!!}
|
//inline Scalar min() const { return ( x<y ) ? ( ( x<z ) ? x:z ) : ( ( y<z ) ? y:z ); // todo t!!}
|
||||||
@@ -185,7 +185,7 @@ public:
|
|||||||
};
|
};
|
||||||
|
|
||||||
// zero element
|
// zero element
|
||||||
static const ntlVector4Dim<Scalar> ZERO;
|
static const vector4Dim<Scalar> ZERO;
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
|
|
||||||
@@ -196,9 +196,9 @@ protected:
|
|||||||
//************************************************************************
|
//************************************************************************
|
||||||
//! Addition operator
|
//! Addition operator
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar> ntlVector4Dim<Scalar>::operator+ ( const ntlVector4Dim<Scalar> &v) const
|
inline vector4Dim<Scalar> vector4Dim<Scalar>::operator+ ( const vector4Dim<Scalar> &v) const
|
||||||
{
|
{
|
||||||
return ntlVector4Dim<Scalar> (value[0]+v.value[0],
|
return vector4Dim<Scalar> (value[0]+v.value[0],
|
||||||
value[1]+v.value[1],
|
value[1]+v.value[1],
|
||||||
value[2]+v.value[2],
|
value[2]+v.value[2],
|
||||||
value[3]+v.value[3]);
|
value[3]+v.value[3]);
|
||||||
@@ -206,42 +206,42 @@ inline ntlVector4Dim<Scalar> ntlVector4Dim<Scalar>::operator+ ( const ntlVector4
|
|||||||
|
|
||||||
//! Addition operator
|
//! Addition operator
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
ntlVector4Dim<Scalar>::operator+(Scalar s) const
|
vector4Dim<Scalar>::operator+(Scalar s) const
|
||||||
{
|
{
|
||||||
return ntlVector4Dim<Scalar>(value[0]+s,
|
return vector4Dim<Scalar>(value[0]+s,
|
||||||
value[1]+s,
|
value[1]+s,
|
||||||
value[2]+s,
|
value[2]+s,
|
||||||
value[3]+s);
|
value[3]+s);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
operator+(float s, ntlVector4Dim<Scalar> v)
|
operator+(float s, vector4Dim<Scalar> v)
|
||||||
{
|
{
|
||||||
return v + s;
|
return v + s;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
operator+(double s, ntlVector4Dim<Scalar> v)
|
operator+(double s, vector4Dim<Scalar> v)
|
||||||
{
|
{
|
||||||
return v + s;
|
return v + s;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
operator+(int s, ntlVector4Dim<Scalar> v)
|
operator+(int s, vector4Dim<Scalar> v)
|
||||||
{
|
{
|
||||||
return v + s;
|
return v + s;
|
||||||
}
|
}
|
||||||
|
|
||||||
//! Subtraction operator
|
//! Subtraction operator
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
ntlVector4Dim<Scalar>::operator-( const ntlVector4Dim<Scalar> &v ) const
|
vector4Dim<Scalar>::operator-( const vector4Dim<Scalar> &v ) const
|
||||||
{
|
{
|
||||||
return ntlVector4Dim<Scalar>(value[0]-v.value[0],
|
return vector4Dim<Scalar>(value[0]-v.value[0],
|
||||||
value[1]-v.value[1],
|
value[1]-v.value[1],
|
||||||
value[2]-v.value[2],
|
value[2]-v.value[2],
|
||||||
value[3]-v.value[3]);
|
value[3]-v.value[3]);
|
||||||
@@ -249,10 +249,10 @@ ntlVector4Dim<Scalar>::operator-( const ntlVector4Dim<Scalar> &v ) const
|
|||||||
|
|
||||||
//! Subtraction operator
|
//! Subtraction operator
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
ntlVector4Dim<Scalar>::operator-(Scalar s ) const
|
vector4Dim<Scalar>::operator-(Scalar s ) const
|
||||||
{
|
{
|
||||||
return ntlVector4Dim<Scalar>(value[0]-s,
|
return vector4Dim<Scalar>(value[0]-s,
|
||||||
value[1]-s,
|
value[1]-s,
|
||||||
value[2]-s,
|
value[2]-s,
|
||||||
value[3]-s,);
|
value[3]-s,);
|
||||||
@@ -260,50 +260,50 @@ ntlVector4Dim<Scalar>::operator-(Scalar s ) const
|
|||||||
|
|
||||||
//! Multiplication operator
|
//! Multiplication operator
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
ntlVector4Dim<Scalar>::operator* ( const ntlVector4Dim<Scalar>& v ) const
|
vector4Dim<Scalar>::operator* ( const vector4Dim<Scalar>& v ) const
|
||||||
{
|
{
|
||||||
return ntlVector4Dim<Scalar>(value[0]*v.value[0],
|
return vector4Dim<Scalar>(value[0]*v.value[0],
|
||||||
value[1]*v.value[1],
|
value[1]*v.value[1],
|
||||||
value[2]*v.value[2],
|
value[2]*v.value[2],
|
||||||
value[3]*v.value[3]);
|
value[3]*v.value[3]);
|
||||||
}
|
}
|
||||||
//! Multiplication operator
|
//! Multiplication operator
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
ntlVector4Dim<Scalar>::operator* (Scalar s) const
|
vector4Dim<Scalar>::operator* (Scalar s) const
|
||||||
{
|
{
|
||||||
return ntlVector4Dim<Scalar>(value[0]*s, value[1]*s, value[2]*s, value[3]*s);
|
return vector4Dim<Scalar>(value[0]*s, value[1]*s, value[2]*s, value[3]*s);
|
||||||
}
|
}
|
||||||
|
|
||||||
//! Multiplication operator
|
//! Multiplication operator
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
operator* (float s, ntlVector4Dim<Scalar> v)
|
operator* (float s, vector4Dim<Scalar> v)
|
||||||
{
|
{
|
||||||
return v * s;
|
return v * s;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
operator*(double s, ntlVector4Dim<Scalar> v)
|
operator*(double s, vector4Dim<Scalar> v)
|
||||||
{
|
{
|
||||||
return v * s;
|
return v * s;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
operator*(int s, ntlVector4Dim<Scalar> v)
|
operator*(int s, vector4Dim<Scalar> v)
|
||||||
{
|
{
|
||||||
return v * s;
|
return v * s;
|
||||||
}
|
}
|
||||||
|
|
||||||
//! Division operator
|
//! Division operator
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
ntlVector4Dim<Scalar>::operator/ (const ntlVector4Dim<Scalar> & v) const
|
vector4Dim<Scalar>::operator/ (const vector4Dim<Scalar> & v) const
|
||||||
{
|
{
|
||||||
return ntlVector4Dim<Scalar> (value[0]/v.value[0],
|
return vector4Dim<Scalar> (value[0]/v.value[0],
|
||||||
value[1]/v.value[1],
|
value[1]/v.value[1],
|
||||||
value[2]/v.value[2],
|
value[2]/v.value[2],
|
||||||
value[3]/v.value[3]);
|
value[3]/v.value[3]);
|
||||||
@@ -311,10 +311,10 @@ ntlVector4Dim<Scalar>::operator/ (const ntlVector4Dim<Scalar> & v) const
|
|||||||
|
|
||||||
//! Division operator
|
//! Division operator
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar>
|
inline vector4Dim<Scalar>
|
||||||
ntlVector4Dim<Scalar>::operator / (Scalar s) const
|
vector4Dim<Scalar>::operator / (Scalar s) const
|
||||||
{
|
{
|
||||||
return ntlVector4Dim<Scalar> (value[0]/s,
|
return vector4Dim<Scalar> (value[0]/s,
|
||||||
value[1]/s,
|
value[1]/s,
|
||||||
value[2]/s,
|
value[2]/s,
|
||||||
value[3]/s);
|
value[3]/s);
|
||||||
@@ -322,7 +322,7 @@ ntlVector4Dim<Scalar>::operator / (Scalar s) const
|
|||||||
|
|
||||||
//! Safe divide
|
//! Safe divide
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline void ntlVector4Dim<Scalar>::safeDivide( const ntlVector4Dim<Scalar> &v )
|
inline void vector4Dim<Scalar>::safeDivide( const vector4Dim<Scalar> &v )
|
||||||
{
|
{
|
||||||
value[0] = (v.value[0]!=0) ? (value[0] / v.value[0]) : 0;
|
value[0] = (v.value[0]!=0) ? (value[0] / v.value[0]) : 0;
|
||||||
value[1] = (v.value[1]!=0) ? (value[1] / v.value[1]) : 0;
|
value[1] = (v.value[1]!=0) ? (value[1] / v.value[1]) : 0;
|
||||||
@@ -336,14 +336,14 @@ inline void ntlVector4Dim<Scalar>::safeDivide( const ntlVector4Dim<Scalar> &v )
|
|||||||
|
|
||||||
//! Dot product
|
//! Dot product
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline Scalar dot ( const ntlVector4Dim<Scalar> &t, const ntlVector4Dim<Scalar> &v ) {
|
inline Scalar dot ( const vector4Dim<Scalar> &t, const vector4Dim<Scalar> &v ) {
|
||||||
return t.x*v.x + t.y*v.y + t.z*v.z + t.t*v.t;
|
return t.x*v.x + t.y*v.y + t.z*v.z + t.t*v.t;
|
||||||
}
|
}
|
||||||
|
|
||||||
//! Cross product
|
//! Cross product
|
||||||
/*template<class Scalar>
|
/*template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar> cross ( const ntlVector4Dim<Scalar> &t, const ntlVector4Dim<Scalar> &v ) {
|
inline vector4Dim<Scalar> cross ( const vector4Dim<Scalar> &t, const vector4Dim<Scalar> &v ) {
|
||||||
NYI ntlVector4Dim<Scalar> cp (
|
NYI vector4Dim<Scalar> cp (
|
||||||
( ( t.y*v.z ) - ( t.z*v.y ) ),
|
( ( t.y*v.z ) - ( t.z*v.y ) ),
|
||||||
( ( t.z*v.x ) - ( t.x*v.z ) ),
|
( ( t.z*v.x ) - ( t.x*v.z ) ),
|
||||||
( ( t.x*v.y ) - ( t.y*v.x ) ) );
|
( ( t.x*v.y ) - ( t.y*v.x ) ) );
|
||||||
@@ -353,36 +353,36 @@ inline ntlVector4Dim<Scalar> cross ( const ntlVector4Dim<Scalar> &t, const ntlVe
|
|||||||
|
|
||||||
//! Compute the magnitude (length) of the vector
|
//! Compute the magnitude (length) of the vector
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline Scalar norm ( const ntlVector4Dim<Scalar>& v ) {
|
inline Scalar norm ( const vector4Dim<Scalar>& v ) {
|
||||||
Scalar l = v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
|
Scalar l = v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
|
||||||
return ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) ? 1. : sqrt ( l );
|
return ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) ? 1. : sqrt ( l );
|
||||||
}
|
}
|
||||||
|
|
||||||
//! Compute squared magnitude
|
//! Compute squared magnitude
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline Scalar normSquare ( const ntlVector4Dim<Scalar>& v ) {
|
inline Scalar normSquare ( const vector4Dim<Scalar>& v ) {
|
||||||
return v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
|
return v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
|
||||||
}
|
}
|
||||||
|
|
||||||
//! Returns a normalized vector
|
//! Returns a normalized vector
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline ntlVector4Dim<Scalar> getNormalized ( const ntlVector4Dim<Scalar>& v ) {
|
inline vector4Dim<Scalar> getNormalized ( const vector4Dim<Scalar>& v ) {
|
||||||
Scalar l = v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
|
Scalar l = v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
|
||||||
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON )
|
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON )
|
||||||
return v; /* normalized "enough"... */
|
return v; /* normalized "enough"... */
|
||||||
else if ( l > VECTOR_EPSILON*VECTOR_EPSILON )
|
else if ( l > VECTOR_EPSILON*VECTOR_EPSILON )
|
||||||
{
|
{
|
||||||
Scalar fac = 1./sqrt ( l );
|
Scalar fac = 1./sqrt ( l );
|
||||||
return ntlVector4Dim<Scalar> ( v.x*fac, v.y*fac, v.z*fac , v.t*fac );
|
return vector4Dim<Scalar> ( v.x*fac, v.y*fac, v.z*fac , v.t*fac );
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
return ntlVector4Dim<Scalar> ( ( Scalar ) 0 );
|
return vector4Dim<Scalar> ( ( Scalar ) 0 );
|
||||||
}
|
}
|
||||||
|
|
||||||
//! Compute the norm of the vector and normalize it.
|
//! Compute the norm of the vector and normalize it.
|
||||||
/*! \return The value of the norm */
|
/*! \return The value of the norm */
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline Scalar normalize ( ntlVector4Dim<Scalar> &v ) {
|
inline Scalar normalize ( vector4Dim<Scalar> &v ) {
|
||||||
Scalar norm;
|
Scalar norm;
|
||||||
Scalar l = v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
|
Scalar l = v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
|
||||||
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) {
|
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) {
|
||||||
@@ -391,14 +391,14 @@ inline Scalar normalize ( ntlVector4Dim<Scalar> &v ) {
|
|||||||
norm = sqrt ( l );
|
norm = sqrt ( l );
|
||||||
v *= 1./norm;
|
v *= 1./norm;
|
||||||
} else {
|
} else {
|
||||||
v = ntlVector4Dim<Scalar>::ZERO;
|
v = vector4Dim<Scalar>::ZERO;
|
||||||
norm = 0.;
|
norm = 0.;
|
||||||
}
|
}
|
||||||
return ( Scalar ) norm;
|
return ( Scalar ) norm;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
inline bool equal(const ntlVector4Dim<Scalar> &v, const ntlVector4Dim<Scalar> &c)
|
inline bool equal(const vector4Dim<Scalar> &v, const vector4Dim<Scalar> &c)
|
||||||
{
|
{
|
||||||
return (ABS(v[0]-c[0]) +
|
return (ABS(v[0]-c[0]) +
|
||||||
ABS(v[1]-c[1]) +
|
ABS(v[1]-c[1]) +
|
||||||
@@ -407,7 +407,7 @@ inline bool equal(const ntlVector4Dim<Scalar> &v, const ntlVector4Dim<Scalar> &c
|
|||||||
}
|
}
|
||||||
|
|
||||||
//! Outputs the object in human readable form as string
|
//! Outputs the object in human readable form as string
|
||||||
template<class Scalar> std::string ntlVector4Dim<Scalar>::toString() const {
|
template<class Scalar> std::string vector4Dim<Scalar>::toString() const {
|
||||||
char buf[256];
|
char buf[256];
|
||||||
snprintf ( buf,256,"<%f,%f,%f,%f>", ( double ) ( *this ) [0], ( double ) ( *this ) [1], ( double ) ( *this ) [2] , ( double ) ( *this ) [3] );
|
snprintf ( buf,256,"<%f,%f,%f,%f>", ( double ) ( *this ) [0], ( double ) ( *this ) [1], ( double ) ( *this ) [2] , ( double ) ( *this ) [3] );
|
||||||
return std::string ( buf );
|
return std::string ( buf );
|
||||||
@@ -415,7 +415,7 @@ template<class Scalar> std::string ntlVector4Dim<Scalar>::toString() const {
|
|||||||
|
|
||||||
//! Outputs the object in human readable form to stream
|
//! Outputs the object in human readable form to stream
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
std::ostream& operator<< ( std::ostream& os, const ntlVector4Dim<Scalar>& i ) {
|
std::ostream& operator<< ( std::ostream& os, const vector4Dim<Scalar>& i ) {
|
||||||
char buf[256];
|
char buf[256];
|
||||||
snprintf ( buf,256,"[%d,%d,%d,%d]", (double) i[0], (double) i[1], (double) i[2] , (double) i[3] );
|
snprintf ( buf,256,"[%d,%d,%d,%d]", (double) i[0], (double) i[1], (double) i[2] , (double) i[3] );
|
||||||
os << std::string ( buf );
|
os << std::string ( buf );
|
||||||
@@ -424,7 +424,7 @@ std::ostream& operator<< ( std::ostream& os, const ntlVector4Dim<Scalar>& i ) {
|
|||||||
|
|
||||||
//! Reads the contents of the object from a stream
|
//! Reads the contents of the object from a stream
|
||||||
template<class Scalar>
|
template<class Scalar>
|
||||||
std::istream& operator>> ( std::istream& is, ntlVector4Dim<Scalar>& i ) {
|
std::istream& operator>> ( std::istream& is, vector4Dim<Scalar>& i ) {
|
||||||
char c;
|
char c;
|
||||||
char dummy[4];
|
char dummy[4];
|
||||||
is >> c >> i[0] >> dummy >> i[1] >> dummy >> i[2] >> dummy >> i[3] >> c;
|
is >> c >> i[0] >> dummy >> i[1] >> dummy >> i[2] >> dummy >> i[3] >> c;
|
||||||
@@ -436,16 +436,16 @@ std::istream& operator>> ( std::istream& is, ntlVector4Dim<Scalar>& i ) {
|
|||||||
/**************************************************************************/
|
/**************************************************************************/
|
||||||
|
|
||||||
//! 3D vector class of type Real (typically float)
|
//! 3D vector class of type Real (typically float)
|
||||||
typedef ntlVector4Dim<Real> Vec4;
|
typedef vector4Dim<Real> Vec4;
|
||||||
|
|
||||||
// a 3D vector with double precision
|
// a 3D vector with double precision
|
||||||
typedef ntlVector4Dim<double> nVec4d;
|
typedef vector4Dim<double> nVec4d;
|
||||||
|
|
||||||
// a 3D vector with single precision
|
// a 3D vector with single precision
|
||||||
typedef ntlVector4Dim<float> nVec4f;
|
typedef vector4Dim<float> nVec4f;
|
||||||
|
|
||||||
//! 3D vector class of type int
|
//! 3D vector class of type int
|
||||||
typedef ntlVector4Dim<int> nVec4i;
|
typedef vector4Dim<int> nVec4i;
|
||||||
|
|
||||||
/* convert int,float and double vectors */
|
/* convert int,float and double vectors */
|
||||||
template<class T> inline nVec4i vec42I(T v) { return nVec4i((int)v[0],(int)v[1],(int)v[2],(int)v[3]); }
|
template<class T> inline nVec4i vec42I(T v) { return nVec4i((int)v[0],(int)v[1],(int)v[2],(int)v[3]); }
|
||||||
|
|||||||
File diff suppressed because it is too large
Load Diff
611
Simulations/vectorbase.h
Normal file
611
Simulations/vectorbase.h
Normal file
@@ -0,0 +1,611 @@
|
|||||||
|
/******************************************************************************
|
||||||
|
*
|
||||||
|
* MantaFlow fluid solver framework
|
||||||
|
* Copyright 2011-2016 Tobias Pfaff, Nils Thuerey
|
||||||
|
*
|
||||||
|
* This program is free software, distributed under the terms of the
|
||||||
|
* GNU General Public License (GPL)
|
||||||
|
* http://www.gnu.org/licenses
|
||||||
|
*
|
||||||
|
* Basic vector class
|
||||||
|
*
|
||||||
|
******************************************************************************/
|
||||||
|
|
||||||
|
#ifndef _VECTORBASE_H
|
||||||
|
#define _VECTORBASE_H
|
||||||
|
|
||||||
|
// get rid of windos min/max defines
|
||||||
|
#if defined(WIN32) || defined(_WIN32)
|
||||||
|
# define NOMINMAX
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <string>
|
||||||
|
#include <limits>
|
||||||
|
#include <iostream>
|
||||||
|
#include "general.h"
|
||||||
|
|
||||||
|
// if min/max are still around...
|
||||||
|
#if defined(WIN32) || defined(_WIN32)
|
||||||
|
# undef min
|
||||||
|
# undef max
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// redefine usage of some windows functions
|
||||||
|
#if defined(WIN32) || defined(_WIN32)
|
||||||
|
# ifndef snprintf
|
||||||
|
# define snprintf _snprintf
|
||||||
|
# endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// use which fp-precision? 1=float, 2=double
|
||||||
|
#ifndef FLOATINGPOINT_PRECISION
|
||||||
|
# define FLOATINGPOINT_PRECISION 1
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// VECTOR_EPSILON is the minimal vector length
|
||||||
|
// In order to be able to discriminate floating point values near zero, and
|
||||||
|
// to be sure not to fail a comparison because of roundoff errors, use this
|
||||||
|
// value as a threshold.
|
||||||
|
#if FLOATINGPOINT_PRECISION==1
|
||||||
|
typedef float Real;
|
||||||
|
# define VECTOR_EPSILON (1e-6f)
|
||||||
|
#else
|
||||||
|
typedef double Real;
|
||||||
|
# define VECTOR_EPSILON (1e-10)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef M_PI
|
||||||
|
# define M_PI 3.1415926536
|
||||||
|
#endif
|
||||||
|
#ifndef M_E
|
||||||
|
# define M_E 2.7182818284
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace Manta
|
||||||
|
{
|
||||||
|
|
||||||
|
//! Basic inlined vector class
|
||||||
|
template<class S>
|
||||||
|
class Vector3D
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
//! Constructor
|
||||||
|
inline Vector3D() : x(0),y(0),z(0) {}
|
||||||
|
|
||||||
|
//! Copy-Constructor
|
||||||
|
inline Vector3D ( const Vector3D<S> &v ) : x(v.x), y(v.y), z(v.z) {}
|
||||||
|
|
||||||
|
//! Copy-Constructor
|
||||||
|
inline Vector3D ( const float * v) : x((S)v[0]), y((S)v[1]), z((S)v[2]) {}
|
||||||
|
|
||||||
|
//! Copy-Constructor
|
||||||
|
inline Vector3D ( const double * v) : x((S)v[0]), y((S)v[1]), z((S)v[2]) {}
|
||||||
|
|
||||||
|
//! Construct a vector from one S
|
||||||
|
inline Vector3D ( S v) : x(v), y(v), z(v) {}
|
||||||
|
|
||||||
|
//! Construct a vector from three Ss
|
||||||
|
inline Vector3D ( S vx, S vy, S vz) : x(vx), y(vy), z(vz) {}
|
||||||
|
|
||||||
|
// Operators
|
||||||
|
|
||||||
|
//! Assignment operator
|
||||||
|
inline const Vector3D<S>& operator= ( const Vector3D<S>& v ) {
|
||||||
|
x = v.x;
|
||||||
|
y = v.y;
|
||||||
|
z = v.z;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Assignment operator
|
||||||
|
inline const Vector3D<S>& operator= ( S s ) {
|
||||||
|
x = y = z = s;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Assign and add operator
|
||||||
|
inline const Vector3D<S>& operator+= ( const Vector3D<S>& v ) {
|
||||||
|
x += v.x;
|
||||||
|
y += v.y;
|
||||||
|
z += v.z;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Assign and add operator
|
||||||
|
inline const Vector3D<S>& operator+= ( S s ) {
|
||||||
|
x += s;
|
||||||
|
y += s;
|
||||||
|
z += s;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Assign and sub operator
|
||||||
|
inline const Vector3D<S>& operator-= ( const Vector3D<S>& v ) {
|
||||||
|
x -= v.x;
|
||||||
|
y -= v.y;
|
||||||
|
z -= v.z;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Assign and sub operator
|
||||||
|
inline const Vector3D<S>& operator-= ( S s ) {
|
||||||
|
x -= s;
|
||||||
|
y -= s;
|
||||||
|
z -= s;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Assign and mult operator
|
||||||
|
inline const Vector3D<S>& operator*= ( const Vector3D<S>& v ) {
|
||||||
|
x *= v.x;
|
||||||
|
y *= v.y;
|
||||||
|
z *= v.z;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Assign and mult operator
|
||||||
|
inline const Vector3D<S>& operator*= ( S s ) {
|
||||||
|
x *= s;
|
||||||
|
y *= s;
|
||||||
|
z *= s;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Assign and div operator
|
||||||
|
inline const Vector3D<S>& operator/= ( const Vector3D<S>& v ) {
|
||||||
|
x /= v.x;
|
||||||
|
y /= v.y;
|
||||||
|
z /= v.z;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Assign and div operator
|
||||||
|
inline const Vector3D<S>& operator/= ( S s ) {
|
||||||
|
x /= s;
|
||||||
|
y /= s;
|
||||||
|
z /= s;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
//! Negation operator
|
||||||
|
inline Vector3D<S> operator- () const {
|
||||||
|
return Vector3D<S> (-x, -y, -z);
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Get smallest component
|
||||||
|
inline S min() const {
|
||||||
|
return ( x<y ) ? ( ( x<z ) ? x:z ) : ( ( y<z ) ? y:z );
|
||||||
|
}
|
||||||
|
//! Get biggest component
|
||||||
|
inline S max() const {
|
||||||
|
return ( x>y ) ? ( ( x>z ) ? x:z ) : ( ( y>z ) ? y:z );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Test if all components are zero
|
||||||
|
inline bool empty() {
|
||||||
|
return x==0 && y==0 && z==0;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! access operator
|
||||||
|
inline S& operator[] ( unsigned int i ) {
|
||||||
|
return value[i];
|
||||||
|
}
|
||||||
|
//! constant access operator
|
||||||
|
inline const S& operator[] ( unsigned int i ) const {
|
||||||
|
return value[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
//! debug output vector to a string
|
||||||
|
std::string toString() const;
|
||||||
|
|
||||||
|
//! test if nans are present
|
||||||
|
bool isValid() const;
|
||||||
|
|
||||||
|
//! actual values
|
||||||
|
union {
|
||||||
|
S value[3];
|
||||||
|
struct {
|
||||||
|
S x;
|
||||||
|
S y;
|
||||||
|
S z;
|
||||||
|
};
|
||||||
|
struct {
|
||||||
|
S X;
|
||||||
|
S Y;
|
||||||
|
S Z;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
//! zero element
|
||||||
|
static const Vector3D<S> Zero, Invalid;
|
||||||
|
|
||||||
|
//! For compatibility with 4d vectors (discards 4th comp)
|
||||||
|
inline Vector3D ( S vx, S vy, S vz, S vDummy) : x(vx), y(vy), z(vz) {}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
//************************************************************************
|
||||||
|
// Additional operators
|
||||||
|
//************************************************************************
|
||||||
|
|
||||||
|
//! Addition operator
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> operator+ ( const Vector3D<S> &v1, const Vector3D<S> &v2 ) {
|
||||||
|
return Vector3D<S> ( v1.x+v2.x, v1.y+v2.y, v1.z+v2.z );
|
||||||
|
}
|
||||||
|
//! Addition operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> operator+ ( const Vector3D<S>& v, S2 s ) {
|
||||||
|
return Vector3D<S> ( v.x+s, v.y+s, v.z+s );
|
||||||
|
}
|
||||||
|
//! Addition operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> operator+ ( S2 s, const Vector3D<S>& v ) {
|
||||||
|
return Vector3D<S> ( v.x+s, v.y+s, v.z+s );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Subtraction operator
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> operator- ( const Vector3D<S> &v1, const Vector3D<S> &v2 ) {
|
||||||
|
return Vector3D<S> ( v1.x-v2.x, v1.y-v2.y, v1.z-v2.z );
|
||||||
|
}
|
||||||
|
//! Subtraction operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> operator- ( const Vector3D<S>& v, S2 s ) {
|
||||||
|
return Vector3D<S> ( v.x-s, v.y-s, v.z-s );
|
||||||
|
}
|
||||||
|
//! Subtraction operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> operator- ( S2 s, const Vector3D<S>& v ) {
|
||||||
|
return Vector3D<S> ( s-v.x, s-v.y, s-v.z );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Multiplication operator
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> operator* ( const Vector3D<S> &v1, const Vector3D<S> &v2 ) {
|
||||||
|
return Vector3D<S> ( v1.x*v2.x, v1.y*v2.y, v1.z*v2.z );
|
||||||
|
}
|
||||||
|
//! Multiplication operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> operator* ( const Vector3D<S>& v, S2 s ) {
|
||||||
|
return Vector3D<S> ( v.x*s, v.y*s, v.z*s );
|
||||||
|
}
|
||||||
|
//! Multiplication operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> operator* ( S2 s, const Vector3D<S>& v ) {
|
||||||
|
return Vector3D<S> ( s*v.x, s*v.y, s*v.z );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Division operator
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> operator/ ( const Vector3D<S> &v1, const Vector3D<S> &v2 ) {
|
||||||
|
return Vector3D<S> ( v1.x/v2.x, v1.y/v2.y, v1.z/v2.z );
|
||||||
|
}
|
||||||
|
//! Division operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> operator/ ( const Vector3D<S>& v, S2 s ) {
|
||||||
|
return Vector3D<S> ( v.x/s, v.y/s, v.z/s );
|
||||||
|
}
|
||||||
|
//! Division operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> operator/ ( S2 s, const Vector3D<S>& v ) {
|
||||||
|
return Vector3D<S> ( s/v.x, s/v.y, s/v.z );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Comparison operator
|
||||||
|
template<class S>
|
||||||
|
inline bool operator== (const Vector3D<S>& s1, const Vector3D<S>& s2) {
|
||||||
|
return s1.x == s2.x && s1.y == s2.y && s1.z == s2.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Comparison operator
|
||||||
|
template<class S>
|
||||||
|
inline bool operator!= (const Vector3D<S>& s1, const Vector3D<S>& s2) {
|
||||||
|
return s1.x != s2.x || s1.y != s2.y || s1.z != s2.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
//************************************************************************
|
||||||
|
// External functions
|
||||||
|
//************************************************************************
|
||||||
|
|
||||||
|
//! Min operator
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> vmin (const Vector3D<S>& s1, const Vector3D<S>& s2) {
|
||||||
|
return Vector3D<S>(std::min(s1.x,s2.x), std::min(s1.y,s2.y), std::min(s1.z,s2.z));
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Min operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> vmin (const Vector3D<S>& s1, S2 s2) {
|
||||||
|
return Vector3D<S>(std::min(s1.x,s2), std::min(s1.y,s2), std::min(s1.z,s2));
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Min operator
|
||||||
|
template<class S1, class S>
|
||||||
|
inline Vector3D<S> vmin (S1 s1, const Vector3D<S>& s2) {
|
||||||
|
return Vector3D<S>(std::min(s1,s2.x), std::min(s1,s2.y), std::min(s1,s2.z));
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Max operator
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> vmax (const Vector3D<S>& s1, const Vector3D<S>& s2) {
|
||||||
|
return Vector3D<S>(std::max(s1.x,s2.x), std::max(s1.y,s2.y), std::max(s1.z,s2.z));
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Max operator
|
||||||
|
template<class S, class S2>
|
||||||
|
inline Vector3D<S> vmax (const Vector3D<S>& s1, S2 s2) {
|
||||||
|
return Vector3D<S>(std::max(s1.x,s2), std::max(s1.y,s2), std::max(s1.z,s2));
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Max operator
|
||||||
|
template<class S1, class S>
|
||||||
|
inline Vector3D<S> vmax (S1 s1, const Vector3D<S>& s2) {
|
||||||
|
return Vector3D<S>(std::max(s1,s2.x), std::max(s1,s2.y), std::max(s1,s2.z));
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Dot product
|
||||||
|
template<class S>
|
||||||
|
inline S dot ( const Vector3D<S> &t, const Vector3D<S> &v ) {
|
||||||
|
return t.x*v.x + t.y*v.y + t.z*v.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Cross product
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> cross ( const Vector3D<S> &t, const Vector3D<S> &v ) {
|
||||||
|
Vector3D<S> cp (
|
||||||
|
( ( t.y*v.z ) - ( t.z*v.y ) ),
|
||||||
|
( ( t.z*v.x ) - ( t.x*v.z ) ),
|
||||||
|
( ( t.x*v.y ) - ( t.y*v.x ) ) );
|
||||||
|
return cp;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Project a vector into a plane, defined by its normal
|
||||||
|
/*! Projects a vector into a plane normal to the given vector, which must
|
||||||
|
have unit length. Self is modified.
|
||||||
|
\param v The vector to project
|
||||||
|
\param n The plane normal
|
||||||
|
\return The projected vector */
|
||||||
|
template<class S>
|
||||||
|
inline const Vector3D<S>& projectNormalTo ( const Vector3D<S>& v, const Vector3D<S> &n) {
|
||||||
|
S sprod = dot (v, n);
|
||||||
|
return v - n * dot(v, n);
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Compute the magnitude (length) of the vector
|
||||||
|
//! (clamps to 0 and 1 with VECTOR_EPSILON)
|
||||||
|
template<class S>
|
||||||
|
inline S norm ( const Vector3D<S>& v ) {
|
||||||
|
S l = v.x*v.x + v.y*v.y + v.z*v.z;
|
||||||
|
if ( l <= VECTOR_EPSILON*VECTOR_EPSILON ) return(0.);
|
||||||
|
return ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) ? 1. : sqrt ( l );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Compute squared magnitude
|
||||||
|
template<class S>
|
||||||
|
inline S normSquare ( const Vector3D<S>& v ) {
|
||||||
|
return v.x*v.x + v.y*v.y + v.z*v.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! compatibility, allow use of int, Real and Vec inputs with norm/normSquare
|
||||||
|
inline Real norm(const Real v) { return fabs(v); }
|
||||||
|
inline Real normSquare(const Real v) { return square(v); }
|
||||||
|
inline Real norm(const int v) { return abs(v); }
|
||||||
|
inline Real normSquare(const int v) { return square(v); }
|
||||||
|
|
||||||
|
//! Returns a normalized vector
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> getNormalized ( const Vector3D<S>& v ) {
|
||||||
|
S l = v.x*v.x + v.y*v.y + v.z*v.z;
|
||||||
|
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON )
|
||||||
|
return v; /* normalized "enough"... */
|
||||||
|
else if ( l > VECTOR_EPSILON*VECTOR_EPSILON )
|
||||||
|
{
|
||||||
|
S fac = 1./sqrt ( l );
|
||||||
|
return Vector3D<S> ( v.x*fac, v.y*fac, v.z*fac );
|
||||||
|
}
|
||||||
|
else
|
||||||
|
return Vector3D<S> ( ( S ) 0 );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Compute the norm of the vector and normalize it.
|
||||||
|
/*! \return The value of the norm */
|
||||||
|
template<class S>
|
||||||
|
inline S normalize ( Vector3D<S> &v ) {
|
||||||
|
S norm;
|
||||||
|
S l = v.x*v.x + v.y*v.y + v.z*v.z;
|
||||||
|
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) {
|
||||||
|
norm = 1.;
|
||||||
|
} else if ( l > VECTOR_EPSILON*VECTOR_EPSILON ) {
|
||||||
|
norm = sqrt ( l );
|
||||||
|
v *= 1./norm;
|
||||||
|
} else {
|
||||||
|
v = Vector3D<S>::Zero;
|
||||||
|
norm = 0.;
|
||||||
|
}
|
||||||
|
return ( S ) norm;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Obtain an orthogonal vector
|
||||||
|
/*! Compute a vector that is orthonormal to the given vector.
|
||||||
|
* Nothing else can be assumed for the direction of the new vector.
|
||||||
|
* \return The orthonormal vector */
|
||||||
|
template<class S>
|
||||||
|
Vector3D<S> getOrthogonalVector(const Vector3D<S>& v) {
|
||||||
|
// Determine the component with max. absolute value
|
||||||
|
int maxIndex= ( fabs ( v.x ) > fabs ( v.y ) ) ? 0 : 1;
|
||||||
|
maxIndex= ( fabs ( v[maxIndex] ) > fabs ( v.z ) ) ? maxIndex : 2;
|
||||||
|
|
||||||
|
// Choose another axis than the one with max. component and project
|
||||||
|
// orthogonal to self
|
||||||
|
Vector3D<S> o ( 0.0 );
|
||||||
|
o[ ( maxIndex+1 ) %3]= 1;
|
||||||
|
|
||||||
|
Vector3D<S> c = cross(v, o);
|
||||||
|
normalize(c);
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Convert vector to polar coordinates
|
||||||
|
/*! Stable vector to angle conversion
|
||||||
|
*\param v vector to convert
|
||||||
|
\param phi unique angle [0,2PI]
|
||||||
|
\param theta unique angle [0,PI]
|
||||||
|
*/
|
||||||
|
template<class S>
|
||||||
|
inline void vecToAngle ( const Vector3D<S>& v, S& phi, S& theta )
|
||||||
|
{
|
||||||
|
if ( fabs ( v.y ) < VECTOR_EPSILON )
|
||||||
|
theta = M_PI/2;
|
||||||
|
else if ( fabs ( v.x ) < VECTOR_EPSILON && fabs ( v.z ) < VECTOR_EPSILON )
|
||||||
|
theta = ( v.y>=0 ) ? 0:M_PI;
|
||||||
|
else
|
||||||
|
theta = atan ( sqrt ( v.x*v.x+v.z*v.z ) /v.y );
|
||||||
|
if ( theta<0 ) theta+=M_PI;
|
||||||
|
|
||||||
|
if ( fabs ( v.x ) < VECTOR_EPSILON )
|
||||||
|
phi = M_PI/2;
|
||||||
|
else
|
||||||
|
phi = atan ( v.z/v.x );
|
||||||
|
if ( phi<0 ) phi+=M_PI;
|
||||||
|
if ( fabs ( v.z ) < VECTOR_EPSILON )
|
||||||
|
phi = ( v.x>=0 ) ? 0 : M_PI;
|
||||||
|
else if ( v.z < 0 )
|
||||||
|
phi += M_PI;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Compute vector reflected at a surface
|
||||||
|
/*! Compute a vector, that is self (as an incoming vector)
|
||||||
|
* reflected at a surface with a distinct normal vector.
|
||||||
|
* Note that the normal is reversed, if the scalar product with it is positive.
|
||||||
|
\param t The incoming vector
|
||||||
|
\param n The surface normal
|
||||||
|
\return The new reflected vector
|
||||||
|
*/
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> reflectVector ( const Vector3D<S>& t, const Vector3D<S>& n ) {
|
||||||
|
Vector3D<S> nn= ( dot ( t, n ) > 0.0 ) ? ( n*-1.0 ) : n;
|
||||||
|
return ( t - nn * ( 2.0 * dot ( nn, t ) ) );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Compute vector refracted at a surface
|
||||||
|
/*! \param t The incoming vector
|
||||||
|
* \param n The surface normal
|
||||||
|
* \param nt The "inside" refraction index
|
||||||
|
* \param nair The "outside" refraction index
|
||||||
|
* \param refRefl Set to 1 on total reflection
|
||||||
|
* \return The refracted vector
|
||||||
|
*/
|
||||||
|
template<class S>
|
||||||
|
inline Vector3D<S> refractVector ( const Vector3D<S> &t, const Vector3D<S> &normal, S nt, S nair, int &refRefl ) {
|
||||||
|
// from Glassner's book, section 5.2 (Heckberts method)
|
||||||
|
S eta = nair / nt;
|
||||||
|
S n = -dot ( t, normal );
|
||||||
|
S tt = 1.0 + eta*eta* ( n*n-1.0 );
|
||||||
|
if ( tt<0.0 ) {
|
||||||
|
// we have total reflection!
|
||||||
|
refRefl = 1;
|
||||||
|
} else {
|
||||||
|
// normal reflection
|
||||||
|
tt = eta*n - sqrt ( tt );
|
||||||
|
return ( t*eta + normal*tt );
|
||||||
|
}
|
||||||
|
return t;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Outputs the object in human readable form as string
|
||||||
|
template<class S> std::string Vector3D<S>::toString() const {
|
||||||
|
char buf[256];
|
||||||
|
snprintf ( buf,256,"[%+4.6f,%+4.6f,%+4.6f]", ( double ) ( *this ) [0], ( double ) ( *this ) [1], ( double ) ( *this ) [2] );
|
||||||
|
// for debugging, optionally increase precision:
|
||||||
|
//snprintf ( buf,256,"[%+4.16f,%+4.16f,%+4.16f]", ( double ) ( *this ) [0], ( double ) ( *this ) [1], ( double ) ( *this ) [2] );
|
||||||
|
return std::string ( buf );
|
||||||
|
}
|
||||||
|
|
||||||
|
template<> std::string Vector3D<int>::toString() const;
|
||||||
|
|
||||||
|
|
||||||
|
//! Outputs the object in human readable form to stream
|
||||||
|
/*! Output format [x,y,z] */
|
||||||
|
template<class S>
|
||||||
|
std::ostream& operator<< ( std::ostream& os, const Vector3D<S>& i ) {
|
||||||
|
os << i.toString();
|
||||||
|
return os;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! Reads the contents of the object from a stream
|
||||||
|
/*! Input format [x,y,z] */
|
||||||
|
template<class S>
|
||||||
|
std::istream& operator>> ( std::istream& is, Vector3D<S>& i ) {
|
||||||
|
char c;
|
||||||
|
char dummy[3];
|
||||||
|
is >> c >> i[0] >> dummy >> i[1] >> dummy >> i[2] >> c;
|
||||||
|
return is;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**************************************************************************/
|
||||||
|
// Define default vector alias
|
||||||
|
/**************************************************************************/
|
||||||
|
|
||||||
|
//! 3D vector class of type Real (typically float)
|
||||||
|
typedef Vector3D<Real> Vec3;
|
||||||
|
|
||||||
|
//! 3D vector class of type int
|
||||||
|
typedef Vector3D<int> Vec3i;
|
||||||
|
|
||||||
|
//! convert to Real Vector
|
||||||
|
template<class T> inline Vec3 toVec3 ( T v ) {
|
||||||
|
return Vec3 ( v[0],v[1],v[2] );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! convert to int Vector
|
||||||
|
template<class T> inline Vec3i toVec3i ( T v ) {
|
||||||
|
return Vec3i ( ( int ) v[0], ( int ) v[1], ( int ) v[2] );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! convert to int Vector
|
||||||
|
template<class T> inline Vec3i toVec3i ( T v0, T v1, T v2 ) {
|
||||||
|
return Vec3i ( ( int ) v0, ( int ) v1, ( int ) v2 );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! round, and convert to int Vector
|
||||||
|
template<class T> inline Vec3i toVec3iRound ( T v ) {
|
||||||
|
return Vec3i ( ( int ) round ( v[0] ), ( int ) round ( v[1] ), ( int ) round ( v[2] ) );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! convert to int Vector if values are close enough to an int
|
||||||
|
template<class T> inline Vec3i toVec3iChecked ( T v ) {
|
||||||
|
Vec3i ret;
|
||||||
|
for (size_t i=0; i<3; i++) {
|
||||||
|
Real a = v[i];
|
||||||
|
if (fabs(a-floor(a+0.5)) > 1e-5)
|
||||||
|
errMsg("argument is not an int, cannot convert");
|
||||||
|
ret[i] = (int) (a+0.5);
|
||||||
|
}
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
//! convert to double Vector
|
||||||
|
template<class T> inline Vector3D<double> toVec3d ( T v ) {
|
||||||
|
return Vector3D<double> ( v[0], v[1], v[2] );
|
||||||
|
}
|
||||||
|
|
||||||
|
//! convert to float Vector
|
||||||
|
template<class T> inline Vector3D<float> toVec3f ( T v ) {
|
||||||
|
return Vector3D<float> ( v[0], v[1], v[2] );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**************************************************************************/
|
||||||
|
// Specializations for common math functions
|
||||||
|
/**************************************************************************/
|
||||||
|
|
||||||
|
template<> inline Vec3 clamp<Vec3>(const Vec3& a, const Vec3& b, const Vec3& c) {
|
||||||
|
return Vec3 ( clamp(a.x, b.x, c.x),
|
||||||
|
clamp(a.y, b.y, c.y),
|
||||||
|
clamp(a.z, b.z, c.z) );
|
||||||
|
}
|
||||||
|
template<> inline Vec3 safeDivide<Vec3>(const Vec3 &a, const Vec3& b) {
|
||||||
|
return Vec3(safeDivide(a.x,b.x), safeDivide(a.y,b.y), safeDivide(a.z,b.z));
|
||||||
|
}
|
||||||
|
template<> inline Vec3 nmod<Vec3>(const Vec3& a, const Vec3& b) {
|
||||||
|
return Vec3(nmod(a.x,b.x),nmod(a.y,b.y),nmod(a.z,b.z));
|
||||||
|
}
|
||||||
|
|
||||||
|
}; // namespace
|
||||||
|
|
||||||
|
|
||||||
|
#endif
|
||||||
@@ -4,6 +4,7 @@
|
|||||||
--- Updated: Florian Ferstl, Sept 2014 ----------------------------------------
|
--- Updated: Florian Ferstl, Sept 2014 ----------------------------------------
|
||||||
--- Updated: Mina Saad Aziz, May 2016 -----------------------------------------
|
--- Updated: Mina Saad Aziz, May 2016 -----------------------------------------
|
||||||
--- Updated: Mengyu Chu, Nov 2017 ------------------------------------------
|
--- Updated: Mengyu Chu, Nov 2017 ------------------------------------------
|
||||||
|
--- Updated: You Xie, Nov 2019 ---------------------------------------------
|
||||||
-------------------------------------------------------------------------------
|
-------------------------------------------------------------------------------
|
||||||
|
|
||||||
This solution contains the following components:
|
This solution contains the following components:
|
||||||
@@ -45,4 +46,4 @@ Further Note:
|
|||||||
DXUT are both based on the new DirectXMath API for linear algebra that comes
|
DXUT are both based on the new DirectXMath API for linear algebra that comes
|
||||||
with the Windows 8.* SDKs (replacing the old D3DXMath). You can use it for
|
with the Windows 8.* SDKs (replacing the old D3DXMath). You can use it for
|
||||||
all of your linear algebra tasks.
|
all of your linear algebra tasks.
|
||||||
Documentation: https://msdn.microsoft.com/en-us/library/windows/desktop/hh437833(v=vs.85).aspx
|
Documentation: https://msdn.microsoft.com/en-us/library/windows/desktop/hh437833(v=vs.85).aspx
|
||||||
|
|||||||
Reference in New Issue
Block a user