|
|
|
|
@@ -3,10 +3,6 @@
|
|
|
|
|
|
|
|
|
|
MassSpringSystemSimulator::MassSpringSystemSimulator()
|
|
|
|
|
{
|
|
|
|
|
m_iTestCase = 0;
|
|
|
|
|
m_fMass = 10;
|
|
|
|
|
m_fStiffness = 40;
|
|
|
|
|
m_iIntegrator = EULER;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const char* MassSpringSystemSimulator::getTestCasesStr()
|
|
|
|
|
@@ -283,17 +279,13 @@ void MassSpringSystemSimulator::applyExternalForce(Vec3 force)
|
|
|
|
|
//eine Vorstellung: for all Masspoints, update force
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int MassSpringSystemSimulator::LengthCalculator(Vec3 position1, Vec3 position2) {
|
|
|
|
|
|
|
|
|
|
Vec3 PosVector = position1 - position2;
|
|
|
|
|
float MassSpringSystemSimulator::LengthCalculator(Vec3 vector)
|
|
|
|
|
{
|
|
|
|
|
//wurzel aus Vektor
|
|
|
|
|
int length = sqrt(pow(PosVector.x, 2) + pow(PosVector.y, 2) + pow(PosVector.z, 2));
|
|
|
|
|
|
|
|
|
|
float length = sqrt(vector.x * vector.x + vector.y * vector.y + vector.z * vector.z);
|
|
|
|
|
return length;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vec3 MassSpringSystemSimulator::calculatePositionTimestepEuler(Vec3 oldPosition, float timestep, Vec3 velocity)
|
|
|
|
|
{
|
|
|
|
|
return oldPosition + timestep * velocity;
|
|
|
|
|
@@ -314,45 +306,42 @@ void MassSpringSystemSimulator::Midpoint(Spring& spring, float timestep) {
|
|
|
|
|
auto massPoint1 = spring.mp1.lock();
|
|
|
|
|
auto massPoint2 = spring.mp2.lock();
|
|
|
|
|
|
|
|
|
|
//old position
|
|
|
|
|
auto mp = massPoint1->position;
|
|
|
|
|
auto mp2 = massPoint2->position;
|
|
|
|
|
//old Velocity
|
|
|
|
|
auto mOld_v = massPoint1->velocity;
|
|
|
|
|
auto m2Old_v = massPoint2->velocity;
|
|
|
|
|
|
|
|
|
|
Vec3 PosVector = mp - mp2;
|
|
|
|
|
Vec3 PosVector = massPoint1->position - massPoint2->position;
|
|
|
|
|
//Abstand ausrechnen
|
|
|
|
|
int d = LengthCalculator(mp, mp2);
|
|
|
|
|
float length = sqrtf(PosVector.x * PosVector.x + PosVector.y * PosVector.y + PosVector.z * PosVector.z);
|
|
|
|
|
//normalize
|
|
|
|
|
Vec3 PosNorm1 = PosVector / d;
|
|
|
|
|
Vec3 PosNorm2 = -1 * PosNorm1;
|
|
|
|
|
|
|
|
|
|
Vec3 Force = -m_fStiffness * (d - spring.initialLength) * PosNorm1;
|
|
|
|
|
Vec3 Force2 = -1 * Force;
|
|
|
|
|
|
|
|
|
|
Vec3 oldAcc = calculateAcceleration(Force,m_fMass);
|
|
|
|
|
Vec3 oldAcc2 = calculateAcceleration(Force2, m_fMass);
|
|
|
|
|
Vec3 normal = PosVector / length;
|
|
|
|
|
|
|
|
|
|
//Midpoint calculator
|
|
|
|
|
//Pos of Midstep
|
|
|
|
|
Vec3 PosOfMidstep = mp + 0.5 * timestep * mOld_v;
|
|
|
|
|
Vec3 PosOfMidstep2 = mp2 + 0.5 * timestep * m2Old_v;
|
|
|
|
|
//Vel at Midstep
|
|
|
|
|
Vec3 VelAtMidstep = mOld_v + 0.5 * timestep * oldAcc;
|
|
|
|
|
Vec3 VelAtMidstep2 = m2Old_v + 0.5 * timestep * oldAcc2;
|
|
|
|
|
std::tuple<Vec3, Vec3> midpointStep1 = MidPointHalfStep(timestep * .5, spring, massPoint1->position, massPoint1->velocity, normal, length);
|
|
|
|
|
std::tuple<Vec3, Vec3> midpointStep2 = MidPointHalfStep(timestep * .5, spring, massPoint2->position, massPoint2->velocity, -normal, length);
|
|
|
|
|
|
|
|
|
|
Vec3 NewPos = mp + timestep * VelAtMidstep;
|
|
|
|
|
Vec3 NewPos2 = mp2 + timestep * VelAtMidstep2;
|
|
|
|
|
Vec3 newPosVector = std::get<0>(midpointStep1) - std::get<0>(midpointStep2);
|
|
|
|
|
float newLength = sqrtf(newPosVector.x * newPosVector.x + newPosVector.y * newPosVector.y + newPosVector.z * newPosVector.z);
|
|
|
|
|
Vec3 newNormal = newPosVector / newLength;
|
|
|
|
|
|
|
|
|
|
Vec3 NewVel = mOld_v + timestep * oldAcc;
|
|
|
|
|
Vec3 NewVel2 = m2Old_v + timestep * oldAcc2;
|
|
|
|
|
//cout << NewPos;
|
|
|
|
|
//cout << NewVel;
|
|
|
|
|
massPoint1->position = NewPos;
|
|
|
|
|
massPoint1->velocity = NewVel;
|
|
|
|
|
massPoint2->position = NewPos2;
|
|
|
|
|
massPoint2->velocity = NewVel2;
|
|
|
|
|
std::tuple<Vec3, Vec3> midpoint1 = MidPointStep(timestep, spring, massPoint1->position, massPoint1->velocity, std::get<1>(midpointStep1), newNormal, newLength);
|
|
|
|
|
std::tuple<Vec3, Vec3> midpoint2 = MidPointStep(timestep, spring, massPoint2->position, massPoint2->velocity, std::get<1>(midpointStep2), -newNormal, newLength);
|
|
|
|
|
|
|
|
|
|
massPoint1->position = std::get<0>(midpoint1);
|
|
|
|
|
massPoint1->velocity = std::get<1>(midpoint1);
|
|
|
|
|
massPoint2->position = std::get<0>(midpoint2);
|
|
|
|
|
massPoint2->velocity = std::get<1>(midpoint2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::tuple<Vec3, Vec3> MassSpringSystemSimulator::MidPointHalfStep(double timestep, const Spring& spring, Vec3 position, Vec3 velocity, Vec3 normal, double length)
|
|
|
|
|
{
|
|
|
|
|
return MidPointStep(timestep, spring, position, velocity, velocity, normal, length);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::tuple<Vec3, Vec3> MassSpringSystemSimulator::MidPointStep(double timestep, const Spring& spring, Vec3 position, Vec3 oldVelo,Vec3 velocity, Vec3 normal, double length)
|
|
|
|
|
{
|
|
|
|
|
auto force = -m_fStiffness * (length - spring.initialLength) * normal;
|
|
|
|
|
auto acc = calculateAcceleration(force, m_fMass);
|
|
|
|
|
auto pos = position + timestep * velocity;
|
|
|
|
|
auto vel = oldVelo + timestep * acc;
|
|
|
|
|
return std::tuple<Vec3, Vec3>(pos, vel);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MassSpringSystemSimulator::Euler(Spring& spring, float timestep)
|
|
|
|
|
@@ -369,11 +358,11 @@ void MassSpringSystemSimulator::Euler(Spring& spring, float timestep)
|
|
|
|
|
// Force of spring is -k * (l - L) * normalizedVector [for P2 we can take -F1)
|
|
|
|
|
auto force = -m_fStiffness * (lengthVector - spring.initialLength) * normalized;
|
|
|
|
|
auto foreP2 = -1 * force;
|
|
|
|
|
auto veloc = calculatePositionTimestepEuler(massPoint1->velocity, timestep, calculateAcceleration(force, 10.));
|
|
|
|
|
auto pos = calculatePositionTimestepEuler(massPoint1->position, timestep, veloc);
|
|
|
|
|
auto veloc = calculateVelocityTimestepEuler(massPoint1->velocity, timestep, calculateAcceleration(force, m_fMass));
|
|
|
|
|
auto pos = calculatePositionTimestepEuler(massPoint1->position, timestep, massPoint1->velocity);
|
|
|
|
|
|
|
|
|
|
auto veloc2 = calculateVelocityTimestepEuler(massPoint2->velocity, timestep, calculateAcceleration(foreP2, 10.));
|
|
|
|
|
auto pos2 = calculatePositionTimestepEuler(massPoint2->position, timestep, veloc2);
|
|
|
|
|
auto veloc2 = calculateVelocityTimestepEuler(massPoint2->velocity, timestep, calculateAcceleration(foreP2, m_fMass));
|
|
|
|
|
auto pos2 = calculatePositionTimestepEuler(massPoint2->position, timestep, massPoint2->velocity);
|
|
|
|
|
|
|
|
|
|
// Update Positions and Velocity
|
|
|
|
|
massPoint1->position = pos;
|
|
|
|
|
|