5 Commits
Ex3 ... Ex2

Author SHA1 Message Date
youxie
2fe3bc4a27 Update PublicRigidBodiesTests.cpp
test file update
2022-12-05 10:49:02 +01:00
youxie
17f77bdcf9 Update quaternion.h
typo fix for quaternion multiplication
2022-11-09 16:20:31 +01:00
Brener
c7f66ad59c Including stdexcept in order to make retargeting to VS19 work 2021-11-15 13:18:46 +01:00
youxie
e1039eec4e Update readme.txt 2019-11-29 09:56:07 +01:00
youxie
25f977e43d for Ex2 2018-11-06 07:36:13 +01:00
17 changed files with 2174 additions and 3342 deletions

View File

@@ -1,159 +0,0 @@
#include "DiffusionSimulator.h"
#include "pcgsolver.h"
using namespace std;
Grid::Grid() {
}
DiffusionSimulator::DiffusionSimulator()
{
m_iTestCase = 0;
m_vfMovableObjectPos = Vec3();
m_vfMovableObjectFinalPos = Vec3();
m_vfRotate = Vec3();
// to be implemented
}
const char * DiffusionSimulator::getTestCasesStr(){
return "Explicit_solver, Implicit_solver";
}
void DiffusionSimulator::reset(){
m_mouse.x = m_mouse.y = 0;
m_trackmouse.x = m_trackmouse.y = 0;
m_oldtrackmouse.x = m_oldtrackmouse.y = 0;
}
void DiffusionSimulator::initUI(DrawingUtilitiesClass * DUC)
{
this->DUC = DUC;
// to be implemented
}
void DiffusionSimulator::notifyCaseChanged(int testCase)
{
m_iTestCase = testCase;
m_vfMovableObjectPos = Vec3(0, 0, 0);
m_vfRotate = Vec3(0, 0, 0);
//
//to be implemented
//
switch (m_iTestCase)
{
case 0:
cout << "Explicit solver!\n";
break;
case 1:
cout << "Implicit solver!\n";
break;
default:
cout << "Empty Test!\n";
break;
}
}
Grid* DiffusionSimulator::diffuseTemperatureExplicit() {//add your own parameters
Grid* newT = new Grid();
// to be implemented
//make sure that the temperature in boundary cells stays zero
return newT;
}
void setupB(std::vector<Real>& b) {//add your own parameters
// to be implemented
//set vector B[sizeX*sizeY]
for (int i = 0; i < 25; i++) {
b.at(i) = 0;
}
}
void fillT() {//add your own parameters
// to be implemented
//fill T with solved vector x
//make sure that the temperature in boundary cells stays zero
}
void setupA(SparseMatrix<Real>& A, double factor) {//add your own parameters
// to be implemented
//setup Matrix A[sizeX*sizeY*sizeZ, sizeX*sizeY*sizeZ]
// set with: A.set_element( index1, index2 , value );
// if needed, read with: A(index1, index2);
// avoid zero rows in A -> set the diagonal value for boundary cells to 1.0
for (int i = 0; i < 25; i++) {
A.set_element(i, i, 1); // set diagonal
}
}
void DiffusionSimulator::diffuseTemperatureImplicit() {//add your own parameters
// solve A T = b
// to be implemented
const int N = 25;//N = sizeX*sizeY*sizeZ
SparseMatrix<Real> *A = new SparseMatrix<Real> (N);
std::vector<Real> *b = new std::vector<Real>(N);
setupA(*A, 0.1);
setupB(*b);
// perform solve
Real pcg_target_residual = 1e-05;
Real pcg_max_iterations = 1000;
Real ret_pcg_residual = 1e10;
int ret_pcg_iterations = -1;
SparsePCGSolver<Real> solver;
solver.set_solver_parameters(pcg_target_residual, pcg_max_iterations, 0.97, 0.25);
std::vector<Real> x(N);
for (int j = 0; j < N; ++j) { x[j] = 0.; }
// preconditioners: 0 off, 1 diagonal, 2 incomplete cholesky
solver.solve(*A, *b, x, ret_pcg_residual, ret_pcg_iterations, 0);
// x contains the new temperature values
fillT();//copy x to T
}
void DiffusionSimulator::simulateTimestep(float timeStep)
{
// to be implemented
// update current setup for each frame
switch (m_iTestCase)
{
case 0:
T = diffuseTemperatureExplicit();
break;
case 1:
diffuseTemperatureImplicit();
break;
}
}
void DiffusionSimulator::drawObjects()
{
// to be implemented
//visualization
}
void DiffusionSimulator::drawFrame(ID3D11DeviceContext* pd3dImmediateContext)
{
drawObjects();
}
void DiffusionSimulator::onClick(int x, int y)
{
m_trackmouse.x = x;
m_trackmouse.y = y;
}
void DiffusionSimulator::onMouse(int x, int y)
{
m_oldtrackmouse.x = x;
m_oldtrackmouse.y = y;
m_trackmouse.x = x;
m_trackmouse.y = y;
}

View File

@@ -1,51 +0,0 @@
#ifndef DIFFUSIONSIMULATOR_h
#define DIFFUSIONSIMULATOR_h
#include "Simulator.h"
#include "vectorbase.h"
//impement your own grid class for saving grid data
class Grid {
public:
// Construtors
Grid();
private:
// Attributes
};
class DiffusionSimulator:public Simulator{
public:
// Construtors
DiffusionSimulator();
// Functions
const char * getTestCasesStr();
void initUI(DrawingUtilitiesClass * DUC);
void reset();
void drawFrame(ID3D11DeviceContext* pd3dImmediateContext);
void notifyCaseChanged(int testCase);
void simulateTimestep(float timeStep);
void externalForcesCalculations(float timeElapsed) {};
void onClick(int x, int y);
void onMouse(int x, int y);
// Specific Functions
void drawObjects();
Grid* diffuseTemperatureExplicit();
void diffuseTemperatureImplicit();
private:
// Attributes
Vec3 m_vfMovableObjectPos;
Vec3 m_vfMovableObjectFinalPos;
Vec3 m_vfRotate;
Point2D m_mouse;
Point2D m_trackmouse;
Point2D m_oldtrackmouse;
Grid *T; //save results of every time step
};
#endif

View File

@@ -0,0 +1,46 @@
#ifndef RIGIDBODYSYSTEMSIMULATOR_h
#define RIGIDBODYSYSTEMSIMULATOR_h
#include "Simulator.h"
//add your header for your rigid body system, for e.g.,
//#include "rigidBodySystem.h"
#define TESTCASEUSEDTORUNTEST 2
class RigidBodySystemSimulator:public Simulator{
public:
// Construtors
RigidBodySystemSimulator();
// Functions
const char * getTestCasesStr();
void initUI(DrawingUtilitiesClass * DUC);
void reset();
void drawFrame(ID3D11DeviceContext* pd3dImmediateContext);
void notifyCaseChanged(int testCase);
void externalForcesCalculations(float timeElapsed);
void simulateTimestep(float timeStep);
void onClick(int x, int y);
void onMouse(int x, int y);
// ExtraFunctions
int getNumberOfRigidBodies();
Vec3 getPositionOfRigidBody(int i);
Vec3 getLinearVelocityOfRigidBody(int i);
Vec3 getAngularVelocityOfRigidBody(int i);
void applyForceOnBody(int i, Vec3 loc, Vec3 force);
void addRigidBody(Vec3 position, Vec3 size, int mass);
void setOrientationOf(int i,Quat orientation);
void setVelocityOf(int i, Vec3 velocity);
private:
// Attributes
// add your RigidBodySystem data members, for e.g.,
// RigidBodySystem * m_pRigidBodySystem;
Vec3 m_externalForce;
// UI Attributes
Point2D m_mouse;
Point2D m_trackmouse;
Point2D m_oldtrackmouse;
};
#endif

View File

@@ -1,11 +0,0 @@
#include "SphereSystemSimulator.h"
std::function<float(float)> SphereSystemSimulator::m_Kernels[5] = {
[](float x) {return 1.0f; }, // Constant, m_iKernel = 0
[](float x) {return 1.0f - x; }, // Linear, m_iKernel = 1, as given in the exercise Sheet, x = d/2r
[](float x) {return (1.0f - x)*(1.0f - x); }, // Quadratic, m_iKernel = 2
[](float x) {return 1.0f / (x)-1.0f; }, // Weak Electric Charge, m_iKernel = 3
[](float x) {return 1.0f / (x*x) - 1.0f; }, // Electric Charge, m_iKernel = 4
};
// SphereSystemSimulator member functions

View File

@@ -1,49 +0,0 @@
#ifndef SPHSYSTEMSIMULATOR_h
#define SPHSYSTEMSIMULATOR_h
#include "Simulator.h"
//#include "spheresystem.h", add your sphere system header file
#define NAIVEACC 0
#define GRIDACC 1
class SphereSystemSimulator:public Simulator{
public:
// Construtors
SphereSystemSimulator();
// Functions
const char * getTestCasesStr();
void initUI(DrawingUtilitiesClass * DUC);
void reset();
void drawFrame(ID3D11DeviceContext* pd3dImmediateContext);
void notifyCaseChanged(int testCase);
void externalForcesCalculations(float timeElapsed);
void simulateTimestep(float timeStep);
void onClick(int x, int y);
void onMouse(int x, int y);
protected:
// Attributes
Vec3 externalForce;
Point2D m_mouse;
Point2D m_trackmouse;
Point2D m_oldtrackmouse;
float m_fMass;
float m_fRadius;
float m_fForceScaling;
float m_fDamping;
int m_iNumSpheres;
int m_iKernel; // index of the m_Kernels[5], more detials in SphereSystemSimulator.cpp
static std::function<float(float)> m_Kernels[5];
int m_iAccelerator; // switch between NAIVEACC and GRIDACC, (optionally, KDTREEACC, 2)
//SphereSystem * m_pSphereSystem; // add your own sphere system member!
// for Demo 3 only:
// you will need multiple SphereSystem objects to do comparisons in Demo 3
// m_iAccelerator should be ignored.
// SphereSystem * m_pSphereSystemGrid;
};
#endif

View File

@@ -0,0 +1,477 @@
// header file:
#include <DirectXMath.h>
#include <Vector>
using namespace DirectX;
// the return structure, with these values, you should be able to calculate the impulse
// the depth shouldn't be used in your impulse calculation, it is a redundant value
// if the normalWorld == XMVectorZero(), no collision
struct CollisionInfo{
bool isValid; // whether there is a collision point, true for yes
GamePhysics::Vec3 collisionPointWorld; // the position of the collision point in world space
GamePhysics::Vec3 normalWorld; // the direction of the impulse to A, negative of the collision face of A
float depth; // the distance of the collision point to the surface, not necessary.
};
// tool data structures/functions called by the collision detection method, you can ignore the details here
namespace collisionTools{
struct Projection{
float min, max;
};
inline std::vector<XMVECTOR> discritizeObject(const XMMATRIX& obj2World)
{
const XMVECTOR centerWorld = XMVector3Transform(XMVectorZero(), obj2World);
XMVECTOR edges[3];
std::vector<XMVECTOR> results;
for (int precession = 0.1; precession <= 0.5; precession += 0.1)
{
for (size_t i = 0; i < 3; ++i)
edges[i] = XMVector3TransformNormal(XMVectorSetByIndex(XMVectorZero(), precession, i), obj2World);
results.push_back(centerWorld - edges[0] - edges[1] - edges[2]);
results.push_back(centerWorld + edges[0] - edges[1] - edges[2]);
results.push_back(centerWorld - edges[0] + edges[1] - edges[2]);
results.push_back(centerWorld + edges[0] + edges[1] - edges[2]);
results.push_back(centerWorld - edges[0] - edges[1] + edges[2]);
results.push_back(centerWorld + edges[0] - edges[1] + edges[2]);
results.push_back(centerWorld - edges[0] + edges[1] + edges[2]);
results.push_back(centerWorld + edges[0] + edges[1] + edges[2]);
}
}
inline XMVECTOR getVectorConnnectingCenters(const XMMATRIX& obj2World_A, const XMMATRIX& obj2World_B)
{
const XMVECTOR centerWorld_A = XMVector3Transform(XMVectorZero(), obj2World_A);
const XMVECTOR centerWorld_B = XMVector3Transform(XMVectorZero(), obj2World_B);
return centerWorld_B - centerWorld_A;
}
// Get Corners
inline std::vector<XMVECTOR> getCorners(const XMMATRIX& obj2World)
{
const XMVECTOR centerWorld = XMVector3Transform(XMVectorZero(), obj2World);
XMVECTOR edges[3];
for (size_t i = 0; i < 3; ++i)
edges[i] = XMVector3TransformNormal(XMVectorSetByIndex(XMVectorZero(), 0.5f, i), obj2World);
std::vector<XMVECTOR> results;
results.push_back(centerWorld - edges[0] - edges[1] - edges[2]);
results.push_back(centerWorld + edges[0] - edges[1] - edges[2]);
results.push_back(centerWorld - edges[0] + edges[1] - edges[2]);
results.push_back(centerWorld + edges[0] + edges[1] - edges[2]); // this +,+,-
results.push_back(centerWorld - edges[0] - edges[1] + edges[2]);
results.push_back(centerWorld + edges[0] - edges[1] + edges[2]); //this +,-,+
results.push_back(centerWorld - edges[0] + edges[1] + edges[2]); //this -,+,+
results.push_back(centerWorld + edges[0] + edges[1] + edges[2]);//this +,+,+
return results;
}
// Get Rigid Box Size
inline XMVECTOR getBoxSize(const XMMATRIX& obj2World)
{
XMVECTOR size = XMVectorZero();
XMVECTOR edges[3];
for (size_t i = 0; i < 3; ++i){
edges[i] = XMVector3TransformNormal(XMVectorSetByIndex(XMVectorZero(), 0.5f, i), obj2World);
XMVECTOR length = XMVector3Length(edges[i]);
size = XMVectorSetByIndex(size, 2.0f*XMVectorGetByIndex(length, 0), i);
}
return size;
}
// Get important Edges
inline std::vector<XMVECTOR> getImportantEdges(const XMMATRIX& obj2World)
{
XMVECTOR xaxis = XMVectorSet(1, 0, 0, 1);
XMVECTOR yaxis = XMVectorSet(0, 1, 0, 1);
XMVECTOR zaxis = XMVectorSet(0, 0, 1, 1);
XMVECTOR edge1 = XMVector3TransformNormal(xaxis, obj2World);
XMVECTOR edge2 = XMVector3TransformNormal(yaxis, obj2World);
XMVECTOR edge3 = XMVector3TransformNormal(zaxis, obj2World);
std::vector<XMVECTOR> results;
results.push_back(edge1);
results.push_back(edge2);
results.push_back(edge3);
return results;
}
// Get the Normal to the faces
inline std::vector<XMVECTOR> getAxisNormalToFaces(const XMMATRIX& obj2World)
{
std::vector<XMVECTOR> edges;
XMVECTOR xaxis = XMVectorSet(1, 0, 0, 1);
XMVECTOR yaxis = XMVectorSet(0, 1, 0, 1);
XMVECTOR zaxis = XMVectorSet(0, 0, 1, 1);
XMVECTOR edge1 = XMVector3Normalize(XMVector3TransformNormal(xaxis, obj2World));
XMVECTOR edge2 = XMVector3Normalize(XMVector3TransformNormal(yaxis, obj2World));
XMVECTOR edge3 = XMVector3Normalize(XMVector3TransformNormal(zaxis, obj2World));
std::vector<XMVECTOR> results;
edges.push_back(edge1);
edges.push_back(edge2);
edges.push_back(edge3);
return edges;
}
// Get the pair of edges
inline std::vector<XMVECTOR> getPairOfEdges(const XMMATRIX& obj2World_A, const XMMATRIX& obj2World_B)
{
std::vector<XMVECTOR> edges1 = getAxisNormalToFaces(obj2World_A);
std::vector<XMVECTOR> edges2 = getAxisNormalToFaces(obj2World_B);
std::vector<XMVECTOR> results;
for (int i = 0; i < edges1.size(); i++)
{
for (int j = 0; j<edges2.size(); j++)
{
XMVECTOR vector = XMVector3Cross(edges1[i], edges2[j]);
if (XMVectorGetX(XMVector3Length(vector)) > 0)
results.push_back(XMVector3Normalize(vector));
}
}
return results;
}
// project a shape on an axis
inline Projection project(const XMMATRIX& obj2World, XMVECTOR axis)
{
// Get corners
std::vector<XMVECTOR> cornersWorld = getCorners(obj2World);
float min = XMVectorGetX(XMVector3Dot(cornersWorld[0], axis));
float max = min;
for (int i = 1; i < cornersWorld.size(); i++)
{
float p = XMVectorGetX(XMVector3Dot(cornersWorld[i], axis));
if (p < min) {
min = p;
}
else if (p > max) {
max = p;
}
}
Projection projection;
projection.max = max;
projection.min = min;
return projection;
}
inline bool overlap(Projection p1, Projection p2)
{
return !((p1.max > p2.max && p1.min > p2.max) || (p2.max > p1.max && p2.min > p1.max));
}
inline float getOverlap(Projection p1, Projection p2)
{
return XMMin(p1.max, p2.max) - XMMax(p1.min, p2.min);
}
static inline XMVECTOR contactPoint(
const XMVECTOR &pOne,
const XMVECTOR &dOne,
float oneSize,
const XMVECTOR &pTwo,
const XMVECTOR &dTwo,
float twoSize,
// If this is true, and the contact point is outside
// the edge (in the case of an edge-face contact) then
// we use one's midpoint, otherwise we use two's.
bool useOne)
{
XMVECTOR toSt, cOne, cTwo;
float dpStaOne, dpStaTwo, dpOneTwo, smOne, smTwo;
float denom, mua, mub;
smOne = XMVectorGetX(XMVector3LengthSq(dOne));
smTwo = XMVectorGetX(XMVector3LengthSq(dTwo));
dpOneTwo = XMVectorGetX(XMVector3Dot(dTwo, dOne));
toSt = pOne - pTwo;
dpStaOne = XMVectorGetX(XMVector3Dot(dOne, toSt));
dpStaTwo = XMVectorGetX(XMVector3Dot(dTwo, toSt));
denom = smOne * smTwo - dpOneTwo * dpOneTwo;
// Zero denominator indicates parrallel lines
if (abs(denom) < 0.0001f) {
return useOne ? pOne : pTwo;
}
mua = (dpOneTwo * dpStaTwo - smTwo * dpStaOne) / denom;
mub = (smOne * dpStaTwo - dpOneTwo * dpStaOne) / denom;
// If either of the edges has the nearest point out
// of bounds, then the edges aren't crossed, we have
// an edge-face contact. Our point is on the edge, which
// we know from the useOne parameter.
if (mua > oneSize ||
mua < -oneSize ||
mub > twoSize ||
mub < -twoSize)
{
return useOne ? pOne : pTwo;
}
else
{
cOne = pOne + dOne * mua;
cTwo = pTwo + dTwo * mub;
return cOne * 0.5 + cTwo * 0.5;
}
}
inline XMVECTOR handleVertexToface(const XMMATRIX& obj2World, const XMVECTOR& toCenter)
{
std::vector<XMVECTOR> corners = getCorners(obj2World);
float min = 1000;
XMVECTOR vertex;
for (int i = 0; i < corners.size(); i++)
{
float value = XMVectorGetX(XMVector3Dot(corners[i], toCenter));
if (value < min)
{
vertex = corners[i];
min = value;
}
}
return vertex;
}
inline CollisionInfo checkCollisionSATHelper(const XMMATRIX& obj2World_A, const XMMATRIX& obj2World_B, XMVECTOR size_A, XMVECTOR size_B)
{
CollisionInfo info;
info.isValid = false;
XMVECTOR collisionPoint = XMVectorZero();
float smallOverlap = 10000.0f;
XMVECTOR axis;
int index;
int fromWhere = -1;
bool bestSingleAxis = false;
XMVECTOR toCenter = getVectorConnnectingCenters(obj2World_A, obj2World_B);
std::vector<XMVECTOR> axes1 = getAxisNormalToFaces(obj2World_A);
std::vector<XMVECTOR> axes2 = getAxisNormalToFaces(obj2World_B);
std::vector<XMVECTOR> axes3 = getPairOfEdges(obj2World_A, obj2World_B);
// loop over the axes1
for (int i = 0; i < axes1.size(); i++) {
// project both shapes onto the axis
Projection p1 = project(obj2World_A, axes1[i]);
Projection p2 = project(obj2World_B, axes1[i]);
// do the projections overlap?
if (!overlap(p1, p2)) {
// then we can guarantee that the shapes do not overlap
return info;
}
else{
// get the overlap
float o = getOverlap(p1, p2);
// check for minimum
if (o < smallOverlap) {
// then set this one as the smallest
smallOverlap = o;
axis = axes1[i];
index = i;
fromWhere = 0;
}
}
}
// loop over the axes2
for (int i = 0; i < axes2.size(); i++) {
// project both shapes onto the axis
Projection p1 = project(obj2World_A, axes2[i]);
Projection p2 = project(obj2World_B, axes2[i]);
// do the projections overlap?
if (!overlap(p1, p2)) {
// then we can guarantee that the shapes do not overlap
return info;
}
else{
// get the overlap
float o = getOverlap(p1, p2);
// check for minimum
if (o < smallOverlap) {
// then set this one as the smallest
smallOverlap = o;
axis = axes2[i];
index = i;
fromWhere = 1;
bestSingleAxis = true;
}
}
}
int whichEdges = 0;
// loop over the axes3
for (int i = 0; i < axes3.size(); i++) {
// project both shapes onto the axis
Projection p1 = project(obj2World_A, axes3[i]);
Projection p2 = project(obj2World_B, axes3[i]);
// do the projections overlap?
if (!overlap(p1, p2)) {
// then we can guarantee that the shapes do not overlap
return info;
}
else{
// get the overlap
float o = getOverlap(p1, p2);
// check for minimum
if (o < smallOverlap) {
// then set this one as the smallest
smallOverlap = o;
axis = axes3[i];
index = i;
whichEdges = i;
fromWhere = 2;
}
}
}
// if we get here then we know that every axis had overlap on it
// so we can guarantee an intersection
XMVECTOR normal;
switch (fromWhere){
case 0:{
normal = axis;
if (XMVectorGetX(XMVector3Dot(axis, toCenter)) <= 0)
{
normal = normal * -1.0f;
}
collisionPoint = handleVertexToface(obj2World_B, toCenter);
}break;
case 1:{
normal = axis;
if (XMVectorGetX(XMVector3Dot(axis, toCenter)) <= 0)
{
normal = normal * -1.0f;
}
collisionPoint = handleVertexToface(obj2World_A, toCenter*-1);
}break;
case 2:{
XMVECTOR axis = XMVector3Normalize(XMVector3Cross(axes1[whichEdges / 3], axes2[whichEdges % 3]));
normal = axis;
if (XMVectorGetX(XMVector3Dot(axis, toCenter)) <= 0)
{
normal = normal * -1.0f;
}
XMVECTOR ptOnOneEdge = XMVectorSet(0.5, 0.5, 0.5, 1);
XMVECTOR ptOnTwoEdge = XMVectorSet(0.5, 0.5, 0.5, 1);
for (int i = 0; i < 3; i++)
{
if (i == whichEdges / 3) ptOnOneEdge = XMVectorSetByIndex(ptOnOneEdge, 0, i);
else if (XMVectorGetX(XMVector3Dot(axes1[i], normal)) < 0) ptOnOneEdge = XMVectorSetByIndex(ptOnOneEdge, -XMVectorGetByIndex(ptOnOneEdge, i), i);
if (i == whichEdges % 3) ptOnTwoEdge = XMVectorSetByIndex(ptOnTwoEdge, 0, i);
else if (XMVectorGetX(XMVector3Dot(axes2[i], normal)) > 0) ptOnTwoEdge = XMVectorSetByIndex(ptOnTwoEdge, -XMVectorGetByIndex(ptOnTwoEdge, i), i);
}
ptOnOneEdge = XMVector3Transform(ptOnOneEdge, obj2World_A);
ptOnTwoEdge = XMVector3Transform(ptOnTwoEdge, obj2World_B);
collisionPoint = contactPoint(ptOnOneEdge,
axes1[whichEdges / 3],
(float)XMVectorGetByIndex(size_A, (whichEdges / 3)),
ptOnTwoEdge,
axes2[whichEdges % 3],
XMVectorGetByIndex(size_B, (whichEdges % 3)),
bestSingleAxis);
}break;
}
info.isValid = true;
info.collisionPointWorld = collisionPoint;
info.depth = smallOverlap;
info.normalWorld = normal*-1;
return info;
}
}
/* params:
obj2World_A, the transfer matrix from object space of A to the world space
obj2World_B, the transfer matrix from object space of B to the world space
*/
inline CollisionInfo checkCollisionSAT(GamePhysics::Mat4& obj2World_A, GamePhysics::Mat4& obj2World_B) {
using namespace collisionTools;
XMMATRIX MatA = obj2World_A.toDirectXMatrix(), MatB = obj2World_B.toDirectXMatrix();
XMVECTOR calSizeA = getBoxSize(MatA);
XMVECTOR calSizeB = getBoxSize(MatB);
return checkCollisionSATHelper(MatA, MatB, calSizeA, calSizeB);
}
// example of using the checkCollisionSAT function
inline void testCheckCollision(int caseid){
if (caseid == 1){// simple examples, suppose that boxes A and B are cubes and have no rotation
GamePhysics::Mat4 AM; AM.initTranslation(1.0, 1.0, 1.0);// box A at (1.0,1.0,1.0)
GamePhysics::Mat4 BM; BM.initTranslation(2.0, 2.0, 2.0); //box B at (2.0,2.0,2.0)
// check for collision
CollisionInfo simpletest = checkCollisionSAT(AM, BM);// should find out a collision here
if (!simpletest.isValid)
std::printf("No Collision\n");
else {
std::printf("collision detected at normal: %f, %f, %f\n", simpletest.normalWorld.x, simpletest.normalWorld.y, simpletest.normalWorld.z);
std::printf("collision point : %f, %f, %f\n", (simpletest.collisionPointWorld).x, (simpletest.collisionPointWorld).y, simpletest.collisionPointWorld.z);
}
// case 1 result:
// collision detected at normal: -1.000000, -0.000000, -0.000000
// collision point : 1.500000, 1.500000, 1.500000
// Box A should be pushed to the left
}
else if (caseid == 2){// case 2, collide at a corner of Box B:
GamePhysics::Mat4 AM, BM;
AM.initTranslation(0.2f, 5.0f, 1.0f); // box A moves(0.2f, 5.0f, 1.0f) from origin
BM.initRotationZ(45); // box B rotates 45 degree around axis z
// box A size(9,2,3), box B size(5.656854f, 5.656854f, 2.0f)
GamePhysics::Mat4 SizeMat;
SizeMat.initScaling(9.0f, 2.0f, 3.0f);
AM = SizeMat * AM;
SizeMat.initScaling(5.656854f, 5.656854f, 2.0f);
BM = SizeMat * BM;
// check for collision
CollisionInfo simpletest = checkCollisionSAT(AM, BM);// should find out a collision here
if (!simpletest.isValid)
std::printf("No Collision\n");
else {
std::printf("collision detected at normal: %f, %f, %f\n", simpletest.normalWorld.x, simpletest.normalWorld.y, simpletest.normalWorld.z);
std::printf("collision point : %f, %f, %f\n", (simpletest.collisionPointWorld).x, (simpletest.collisionPointWorld).y, simpletest.collisionPointWorld.z);
}
// case 2 result:
// collision detected at normal : 0.000000, 1.000000, 0.000000
// collision point : 0.000000, 4.000000, 1.000000
}
else if (caseid == 3){// case 3, collide at a corner of Box A:
// box A first rotates 45 degree around axis z
// box A moves(-2.0f, 0.0f, 1.0f) from origin,(-2.0f,0.0f,1.0f) is the centre position of A in world space
// box A size(2.829f, 2.829f, 2.0f)
GamePhysics::Mat4 AM_rot; AM_rot.initRotationZ(45);
GamePhysics::Mat4 AM_tra; AM_tra.initTranslation(-2.0f, 0.0f, 1.0f);
GamePhysics::Mat4 AM_sca; AM_sca.initScaling(2.829f, 2.829f, 2.0f);
// get the object 2 world matrix of A
GamePhysics::Mat4 AM = AM_sca * AM_rot * AM_tra; // pay attention to the order!
// order, since we are working with the DirectX, we use left-handed matrixes!
// box B first rotates 90 degree around axis z
// box B then moves (1.0f,0.5f,0.0f) from origin, (1.0f,0.5f,0.0f) is also the centre position of B in world space
// box B size(9.0f, 2.0f, 4.0f)
GamePhysics::Mat4 BM_rot; BM_rot.initRotationZ(90);
GamePhysics::Mat4 BM_tra; BM_tra.initTranslation(1.0f, 0.5f, 0.0f);
GamePhysics::Mat4 BM_sca; BM_sca.initScaling(9.0f, 2.0f, 4.0f);
GamePhysics::Mat4 BM = BM_sca * BM_rot * BM_tra; // pay attention to the order!
// check for collision
CollisionInfo simpletest = checkCollisionSAT(AM, BM);// should find out a collision here
if (!simpletest.isValid)
std::printf("No Collision\n");
else {
std::printf("collision detected at normal: %f, %f, %f\n", simpletest.normalWorld.x, simpletest.normalWorld.y, simpletest.normalWorld.z);
std::printf("collision point : %f, %f, %f\n", (simpletest.collisionPointWorld).x, (simpletest.collisionPointWorld).y, simpletest.collisionPointWorld.z);
}
// case 3 result:
// collision detected at normal: -1.000000, 0.000000, -0.000000
// collision point : 0.000405, 0.000000, 0.000000
}
}

View File

@@ -1,160 +0,0 @@
/******************************************************************************
*
* MantaFlow fluid solver framework
* Copyright 2011 Tobias Pfaff, Nils Thuerey
*
* This program is free software, distributed under the terms of the
* GNU General Public License (GPL)
* http://www.gnu.org/licenses
*
* Globally used macros and functions
*
******************************************************************************/
#ifndef _GENERAL_H
#define _GENERAL_H
#include <iostream>
#include <sstream>
#include <cmath>
#include <algorithm>
namespace Manta {
// ui data exchange
#ifdef GUI
// defined in qtmain.cpp
extern void updateQtGui(bool full, int frame, float time, const std::string& curPlugin);
#else
// dummy function if GUI is not enabled
inline void updateQtGui(bool full, int frame, float time, const std::string& curPlugin) {}
#endif
// activate debug mode if _DEBUG is defined (eg for windows)
#ifndef DEBUG
#ifdef _DEBUG
#define DEBUG 1
#endif // _DEBUG
#endif // DEBUG
// Standard exception
class Error : public std::exception
{
public:
Error(const std::string& s) : mS(s) {
# ifdef DEBUG
// print error
std::cerr << "Aborting: "<< s <<" \n";
// then force immedieate crash in debug mode
*(volatile int*)(0) = 1;
# endif
}
virtual ~Error() throw() {}
virtual const char* what() const throw() { return mS.c_str(); }
private:
std::string mS;
};
// mark unused parameter variables
#define unusedParameter(x) ((void)x)
// Debug output functions and macros
extern int gDebugLevel;
#define MSGSTREAM std::ostringstream msg; msg.precision(7); msg.width(9);
#define debMsg(mStr, level) if (_chklevel(level)) { MSGSTREAM; msg << mStr; std::cout << msg.str() << std::endl; }
inline bool _chklevel(int level=0) { return gDebugLevel >= level; }
// error and assertation macros
#ifdef DEBUG
# define DEBUG_ONLY(a) a
#else
# define DEBUG_ONLY(a)
#endif
#define throwError(msg) { std::ostringstream __s; __s << msg << std::endl << "Error raised in " << __FILE__ << ":" << __LINE__; throw Manta::Error(__s.str()); }
#define errMsg(msg) throwError(msg);
#define assertMsg(cond,msg) if(!(cond)) throwError(msg)
#define assertDeb(cond,msg) DEBUG_ONLY( assertMsg(cond,msg) )
// for compatibility with blender, blender only defines WITH_MANTA, make sure we have "BLENDER"
#ifndef BLENDER
#ifdef WITH_MANTA
#define BLENDER 1
#endif
#endif
// common type for indexing large grids
typedef long long IndexInt;
// template tricks
template<typename T>
struct remove_pointers {
typedef T type;
};
template<typename T>
struct remove_pointers<T*> {
typedef T type;
};
template<typename T>
struct remove_pointers<T&> {
typedef T type;
};
// Commonly used enums and types
//! Timing class for preformance measuring
struct MuTime {
MuTime() { get(); }
MuTime operator-(const MuTime& a) { MuTime b; b.time = time - a.time; return b; };
MuTime operator+(const MuTime& a) { MuTime b; b.time = time + a.time; return b; };
MuTime operator/(unsigned long a) { MuTime b; b.time = time / a; return b; };
MuTime& operator+=(const MuTime& a) { time += a.time; return *this; }
MuTime& operator-=(const MuTime& a) { time -= a.time; return *this; }
MuTime& operator/=(unsigned long a) { time /= a; return *this; }
std::string toString();
void clear() { time = 0; }
void get();
MuTime update();
unsigned long time;
};
std::ostream& operator<< (std::ostream& os, const MuTime& t);
//! generate a string with infos about the current mantaflow build
std::string buildInfoString();
// Some commonly used math helpers
template<class T> inline T square(T a) {
return a*a;
}
template<class T> inline T cubed(T a) {
return a*a*a;
}
template<class T> inline T clamp(const T& val, const T& vmin, const T& vmax) {
if (val < vmin) return vmin;
if (val > vmax) return vmax;
return val;
}
template<class T> inline T nmod(const T& a, const T& b);
template<> inline int nmod(const int& a, const int& b) { int c=a%b; return (c<0) ? (c+b) : c; }
template<> inline float nmod(const float& a, const float& b) { float c=std::fmod(a,b); return (c<0) ? (c+b) : c; }
template<> inline double nmod(const double& a, const double& b) { double c=std::fmod(a,b); return (c<0) ? (c+b) : c; }
template<class T> inline T safeDivide(const T& a, const T& b);
template<> inline int safeDivide<int>(const int &a, const int& b) { return (b) ? (a/b) : a; }
template<> inline float safeDivide<float>(const float &a, const float& b) { return (b) ? (a/b) : a; }
template<> inline double safeDivide<double>(const double &a, const double& b) { return (b) ? (a/b) : a; }
inline bool c_isnan(float c) {
volatile float d=c;
return d != d;
}
} // namespace
#endif

View File

@@ -20,11 +20,10 @@ using namespace GamePhysics;
//#define ADAPTIVESTEP
//#define TEMPLATE_DEMO
#define TEMPLATE_DEMO
//#define MASS_SPRING_SYSTEM
//#define RIGID_BODY_SYSTEM
//#define SPH_SYSTEM
#define DIFFUSION_SYSTEM
#ifdef TEMPLATE_DEMO
#include "TemplateSimulator.h"
@@ -39,10 +38,6 @@ using namespace GamePhysics;
//#include "SPHSystemSimulator.h"
#endif
#ifdef DIFFUSION_SYSTEM
#include "DiffusionSimulator.h"
#endif
DrawingUtilitiesClass * g_pDUC;
Simulator * g_pSimulator;
float g_fTimestep = 0.001;
@@ -374,9 +369,6 @@ int main(int argc, char* argv[])
#endif
#ifdef SPH_SYSTEM
//g_pSimulator= new SPHSystemSimulator();
#endif
#ifdef DIFFUSION_SYSTEM
g_pSimulator= new DiffusionSimulator();
#endif
g_pSimulator->reset();

View File

@@ -1,750 +0,0 @@
//
// Preconditioned conjugate gradient solver
//
// Created by Robert Bridson, Ryoichi Ando and Nils Thuerey
//
#ifndef RCMATRIX3_H
#define RCMATRIX3_H
#include <iterator>
#include <cassert>
#include <vector>
#include <fstream>
#include <cmath>
#include <functional>
// index type
#define int_index long long
// parallelization disabled
#define parallel_for(size) { int thread_number = 0; int_index parallel_index=0; for( int_index parallel_index=0; parallel_index<(int_index)size; parallel_index++ ) {
#define parallel_end } thread_number=parallel_index=0; }
#define parallel_block
#define do_parallel
#define do_end
#define block_end
#include "vectorbase.h"
// note - "Int" instead of "N" here, the latter is size!
template<class Int, class T>
struct InstantBLAS {
static inline Int offset(Int N, Int incX) { return ((incX) > 0 ? 0 : ((N) - 1) * (-(incX))); }
static T cblas_ddot( const Int N, const T *X, const Int incX, const T *Y, const Int incY) {
double r = 0.0; // always use double precision internally here...
Int i;
Int ix = offset(N,incX);
Int iy = offset(N,incY);
for (i = 0; i < N; i++) {
r += X[ix] * Y[iy];
ix += incX;
iy += incY;
}
return (T)r;
}
static void cblas_daxpy( const Int N, const T alpha, const T *X, const Int incX, T *Y, const Int incY) {
Int i;
if (N <= 0 ) return;
if (alpha == 0.0) return;
if (incX == 1 && incY == 1) {
const Int m = N % 4;
for (i = 0; i < m; i++)
Y[i] += alpha * X[i];
for (i = m; i + 3 < N; i += 4) {
Y[i ] += alpha * X[i ];
Y[i + 1] += alpha * X[i + 1];
Y[i + 2] += alpha * X[i + 2];
Y[i + 3] += alpha * X[i + 3];
}
} else {
Int ix = offset(N, incX);
Int iy = offset(N, incY);
for (i = 0; i < N; i++) {
Y[iy] += alpha * X[ix];
ix += incX;
iy += incY;
}
}
}
// dot products ==============================================================
static inline T dot(const std::vector<T> &x, const std::vector<T> &y) {
return cblas_ddot((int)x.size(), &x[0], 1, &y[0], 1);
}
// inf-norm (maximum absolute value: index of max returned) ==================
static inline Int index_abs_max(const std::vector<T> &x) {
int maxind = 0;
T maxvalue = 0;
for(Int i = 0; i < (Int)x.size(); ++i) {
if(std::abs(x[i]) > maxvalue) {
maxvalue = fabs(x[i]);
maxind = i;
}
}
return maxind;
}
// inf-norm (maximum absolute value) =========================================
// technically not part of BLAS, but useful
static inline T abs_max(const std::vector<T> &x)
{ return std::abs(x[index_abs_max(x)]); }
// saxpy (y=alpha*x+y) =======================================================
static inline void add_scaled(T alpha, const std::vector<T> &x, std::vector<T> &y) {
cblas_daxpy((Int)x.size(), alpha, &x[0], 1, &y[0], 1);
}
};
template<class T>
void zero(std::vector<T> &v)
{ for(int i=(int)v.size()-1; i>=0; --i) v[i]=0; }
template<class T>
void insert(std::vector<T> &a, unsigned int index, T e)
{
a.push_back(a.back());
for(unsigned int i=(unsigned int)a.size()-1; i>index; --i)
a[i]=a[i-1];
a[index]=e;
}
template<class T>
void erase(std::vector<T> &a, unsigned int index)
{
for(unsigned int i=index; i<a.size()-1; ++i)
a[i]=a[i+1];
a.pop_back();
}
//============================================================================
// Dynamic compressed sparse row matrix.
template<class T>
struct SparseMatrix
{
int n; // dimension
std::vector<std::vector<int> > index; // for each row, a list of all column indices (sorted)
std::vector<std::vector<T> > value; // values corresponding to index
explicit SparseMatrix(int n_=0, int expected_nonzeros_per_row=7)
: n(n_), index(n_), value(n_)
{
for(int i=0; i<n; ++i){
index[i].reserve(expected_nonzeros_per_row);
value[i].reserve(expected_nonzeros_per_row);
}
}
void clear(void)
{
n=0;
index.clear();
value.clear();
}
void zero(void)
{
for(int i=0; i<n; ++i){
index[i].resize(0);
value[i].resize(0);
}
}
void resize(int n_)
{
n=n_;
index.resize(n);
value.resize(n);
}
T operator()(int i, int j) const
{
for(int k=0; k<(int)index[i].size(); ++k){
if(index[i][k]==j) return value[i][k];
else if(index[i][k]>j) return 0;
}
return 0;
}
void set_element(int i, int j, T new_value)
{
int k=0;
for(; k<(int)index[i].size(); ++k){
if(index[i][k]==j){
value[i][k]=new_value;
return;
}else if(index[i][k]>j){
insert(index[i], k, j);
insert(value[i], k, new_value);
return;
}
}
index[i].push_back(j);
value[i].push_back(new_value);
}
void add_to_element(int i, int j, T increment_value)
{
int k=0;
for(; k<(int)index[i].size(); ++k){
if(index[i][k]==j){
value[i][k]+=increment_value;
return;
}else if(index[i][k]>j){
insert(index[i], k, j);
insert(value[i], k, increment_value);
return;
}
}
index[i].push_back(j);
value[i].push_back(increment_value);
}
// assumes indices is already sorted
void add_sparse_row(int i, const std::vector<int> &indices, const std::vector<T> &values)
{
int j=0, k=0;
while(j<indices.size() && k<(int)index[i].size()){
if(index[i][k]<indices[j]){
++k;
}else if(index[i][k]>indices[j]){
insert(index[i], k, indices[j]);
insert(value[i], k, values[j]);
++j;
}else{
value[i][k]+=values[j];
++j;
++k;
}
}
for(;j<indices.size(); ++j){
index[i].push_back(indices[j]);
value[i].push_back(values[j]);
}
}
// assumes matrix has symmetric structure - so the indices in row i tell us which columns to delete i from
void symmetric_remove_row_and_column(int i)
{
for(int a=0; a<index[i].size(); ++a){
int j=index[i][a]; //
for(int b=0; b<index[j].size(); ++b){
if(index[j][b]==i){
erase(index[j], b);
erase(value[j], b);
break;
}
}
}
index[i].resize(0);
value[i].resize(0);
}
void write_matlab(std::ostream &output, const char *variable_name)
{
output<<variable_name<<"=sparse([";
for(int i=0; i<n; ++i){
for(int j=0; j<index[i].size(); ++j){
output<<i+1<<" ";
}
}
output<<"],...\n [";
for(int i=0; i<n; ++i){
for(int j=0; j<index[i].size(); ++j){
output<<index[i][j]+1<<" ";
}
}
output<<"],...\n [";
for(int i=0; i<n; ++i){
for(int j=0; j<value[i].size(); ++j){
output<<value[i][j]<<" ";
}
}
output<<"], "<<n<<", "<<n<<");"<<std::endl;
}
};
typedef SparseMatrix<float> SparseMatrixf;
typedef SparseMatrix<double> SparseMatrixd;
// perform result=matrix*x
template<class T>
void multiply(const SparseMatrix<T> &matrix, const std::vector<T> &x, std::vector<T> &result)
{
assert(matrix.n==x.size());
result.resize(matrix.n);
//for(int i=0; i<matrix.n; ++i)
parallel_for(matrix.n) {
unsigned i (parallel_index);
T value=0;
for(int j=0; j<(int)matrix.index[i].size(); ++j){
value+=matrix.value[i][j]*x[matrix.index[i][j]];
}
result[i]=value;
} parallel_end
}
// perform result=result-matrix*x
template<class T>
void multiply_and_subtract(const SparseMatrix<T> &matrix, const std::vector<T> &x, std::vector<T> &result)
{
assert(matrix.n==x.size());
result.resize(matrix.n);
for(int i=0; i<(int)matrix.n; ++i){
for(int j=0; j<(int)matrix.index[i].size(); ++j){
result[i]-=matrix.value[i][j]*x[matrix.index[i][j]];
}
}
}
//============================================================================
// Fixed version of SparseMatrix. This is not a good structure for dynamically
// modifying the matrix, but can be significantly faster for matrix-vector
// multiplies due to better data locality.
template<class T>
struct FixedSparseMatrix
{
int n; // dimension
std::vector<T> value; // nonzero values row by row
std::vector<int> colindex; // corresponding column indices
std::vector<int> rowstart; // where each row starts in value and colindex (and last entry is one past the end, the number of nonzeros)
explicit FixedSparseMatrix(int n_=0)
: n(n_), value(0), colindex(0), rowstart(n_+1)
{}
void clear(void)
{
n=0;
value.clear();
colindex.clear();
rowstart.clear();
}
void resize(int n_)
{
n=n_;
rowstart.resize(n+1);
}
void construct_from_matrix(const SparseMatrix<T> &matrix)
{
resize(matrix.n);
rowstart[0]=0;
for(int i=0; i<n; ++i){
rowstart[i+1]=rowstart[i]+matrix.index[i].size();
}
value.resize(rowstart[n]);
colindex.resize(rowstart[n]);
int j=0;
for(int i=0; i<n; ++i){
for(int k=0; k<(int)matrix.index[i].size(); ++k){
value[j]=matrix.value[i][k];
colindex[j]=matrix.index[i][k];
++j;
}
}
}
void write_matlab(std::ostream &output, const char *variable_name)
{
output<<variable_name<<"=sparse([";
for(int i=0; i<n; ++i){
for(int j=rowstart[i]; j<rowstart[i+1]; ++j){
output<<i+1<<" ";
}
}
output<<"],...\n [";
for(int i=0; i<n; ++i){
for(int j=rowstart[i]; j<rowstart[i+1]; ++j){
output<<colindex[j]+1<<" ";
}
}
output<<"],...\n [";
for(int i=0; i<n; ++i){
for(int j=rowstart[i]; j<rowstart[i+1]; ++j){
output<<value[j]<<" ";
}
}
output<<"], "<<n<<", "<<n<<");"<<std::endl;
}
};
// perform result=matrix*x
template<class T>
void multiply(const FixedSparseMatrix<T> &matrix, const std::vector<T> &x, std::vector<T> &result)
{
assert(matrix.n==x.size());
result.resize(matrix.n);
//for(int i=0; i<matrix.n; ++i)
parallel_for(matrix.n) {
unsigned i (parallel_index);
T value=0;
for(int j=matrix.rowstart[i]; j<matrix.rowstart[i+1]; ++j){
value+=matrix.value[j]*x[matrix.colindex[j]];
}
result[i]=value;
} parallel_end
}
// perform result=result-matrix*x
template<class T>
void multiply_and_subtract(const FixedSparseMatrix<T> &matrix, const std::vector<T> &x, std::vector<T> &result)
{
assert(matrix.n==x.size());
result.resize(matrix.n);
for(int i=0; i<matrix.n; ++i){
for(int j=matrix.rowstart[i]; j<matrix.rowstart[i+1]; ++j){
result[i]-=matrix.value[j]*x[matrix.colindex[j]];
}
}
}
//============================================================================
// A simple compressed sparse column data structure (with separate diagonal)
// for lower triangular matrices
template<class T>
struct SparseColumnLowerFactor
{
int n;
std::vector<T> invdiag; // reciprocals of diagonal elements
std::vector<T> value; // values below the diagonal, listed column by column
std::vector<int> rowindex; // a list of all row indices, for each column in turn
std::vector<int> colstart; // where each column begins in rowindex (plus an extra entry at the end, of #nonzeros)
std::vector<T> adiag; // just used in factorization: minimum "safe" diagonal entry allowed
explicit SparseColumnLowerFactor(int n_=0)
: n(n_), invdiag(n_), colstart(n_+1), adiag(n_)
{}
void clear(void)
{
n=0;
invdiag.clear();
value.clear();
rowindex.clear();
colstart.clear();
adiag.clear();
}
void resize(int n_)
{
n=n_;
invdiag.resize(n);
colstart.resize(n+1);
adiag.resize(n);
}
void write_matlab(std::ostream &output, const char *variable_name)
{
output<<variable_name<<"=sparse([";
for(int i=0; i<n; ++i){
output<<" "<<i+1;
for(int j=colstart[i]; j<colstart[i+1]; ++j){
output<<" "<<rowindex[j]+1;
}
}
output<<"],...\n [";
for(int i=0; i<n; ++i){
output<<" "<<i+1;
for(int j=colstart[i]; j<colstart[i+1]; ++j){
output<<" "<<i+1;
}
}
output<<"],...\n [";
for(int i=0; i<n; ++i){
output<<" "<<(invdiag[i]!=0 ? 1/invdiag[i] : 0);
for(int j=colstart[i]; j<colstart[i+1]; ++j){
output<<" "<<value[j];
}
}
output<<"], "<<n<<", "<<n<<");"<<std::endl;
}
};
//============================================================================
// Incomplete Cholesky factorization, level zero, with option for modified version.
// Set modification_parameter between zero (regular incomplete Cholesky) and
// one (fully modified version), with values close to one usually giving the best
// results. The min_diagonal_ratio parameter is used to detect and correct
// problems in factorization: if a pivot is this much less than the diagonal
// entry from the original matrix, the original matrix entry is used instead.
template<class T>
void factor_modified_incomplete_cholesky0(const SparseMatrix<T> &matrix, SparseColumnLowerFactor<T> &factor,
T modification_parameter=0.97, T min_diagonal_ratio=0.25)
{
// first copy lower triangle of matrix into factor (Note: assuming A is symmetric of course!)
factor.resize(matrix.n);
zero(factor.invdiag); // important: eliminate old values from previous solves!
factor.value.resize(0);
factor.rowindex.resize(0);
zero(factor.adiag);
for(int i=0; i<matrix.n; ++i){
factor.colstart[i]=(int)factor.rowindex.size();
for(int j=0; j<(int)matrix.index[i].size(); ++j){
if(matrix.index[i][j]>i){
factor.rowindex.push_back(matrix.index[i][j]);
factor.value.push_back(matrix.value[i][j]);
}else if(matrix.index[i][j]==i){
factor.invdiag[i]=factor.adiag[i]=matrix.value[i][j];
}
}
}
factor.colstart[matrix.n]=(int)factor.rowindex.size();
// now do the incomplete factorization (figure out numerical values)
// MATLAB code:
// L=tril(A);
// for k=1:size(L,2)
// L(k,k)=sqrt(L(k,k));
// L(k+1:end,k)=L(k+1:end,k)/L(k,k);
// for j=find(L(:,k))'
// if j>k
// fullupdate=L(:,k)*L(j,k);
// incompleteupdate=fullupdate.*(A(:,j)~=0);
// missing=sum(fullupdate-incompleteupdate);
// L(j:end,j)=L(j:end,j)-incompleteupdate(j:end);
// L(j,j)=L(j,j)-omega*missing;
// end
// end
// end
for(int k=0; k<matrix.n; ++k){
if(factor.adiag[k]==0) continue; // null row/column
// figure out the final L(k,k) entry
if(factor.invdiag[k]<min_diagonal_ratio*factor.adiag[k])
factor.invdiag[k]=1/sqrt(factor.adiag[k]); // drop to Gauss-Seidel here if the pivot looks dangerously small
else
factor.invdiag[k]=1/sqrt(factor.invdiag[k]);
// finalize the k'th column L(:,k)
for(int p=factor.colstart[k]; p<factor.colstart[k+1]; ++p){
factor.value[p]*=factor.invdiag[k];
}
// incompletely eliminate L(:,k) from future columns, modifying diagonals
for(int p=factor.colstart[k]; p<factor.colstart[k+1]; ++p){
int j=factor.rowindex[p]; // work on column j
T multiplier=factor.value[p];
T missing=0;
int a=factor.colstart[k];
// first look for contributions to missing from dropped entries above the diagonal in column j
int b=0;
while(a<factor.colstart[k+1] && factor.rowindex[a]<j){
// look for factor.rowindex[a] in matrix.index[j] starting at b
while(b<(int)matrix.index[j].size()){
if(matrix.index[j][b]<factor.rowindex[a])
++b;
else if(matrix.index[j][b]==factor.rowindex[a])
break;
else{
missing+=factor.value[a];
break;
}
}
++a;
}
// adjust the diagonal j,j entry
if(a<factor.colstart[k+1] && factor.rowindex[a]==j){
factor.invdiag[j]-=multiplier*factor.value[a];
}
++a;
// and now eliminate from the nonzero entries below the diagonal in column j (or add to missing if we can't)
b=factor.colstart[j];
while(a<factor.colstart[k+1] && b<factor.colstart[j+1]){
if(factor.rowindex[b]<factor.rowindex[a])
++b;
else if(factor.rowindex[b]==factor.rowindex[a]){
factor.value[b]-=multiplier*factor.value[a];
++a;
++b;
}else{
missing+=factor.value[a];
++a;
}
}
// and if there's anything left to do, add it to missing
while(a<factor.colstart[k+1]){
missing+=factor.value[a];
++a;
}
// and do the final diagonal adjustment from the missing entries
factor.invdiag[j]-=modification_parameter*multiplier*missing;
}
}
}
//============================================================================
// Solution routines with lower triangular matrix.
// solve L*result=rhs
template<class T>
void solve_lower(const SparseColumnLowerFactor<T> &factor, const std::vector<T> &rhs, std::vector<T> &result)
{
assert(factor.n==rhs.size());
assert(factor.n==result.size());
result=rhs;
for(int i=0; i<factor.n; ++i){
result[i]*=factor.invdiag[i];
for(int j=factor.colstart[i]; j<factor.colstart[i+1]; ++j){
result[factor.rowindex[j]]-=factor.value[j]*result[i];
}
}
}
// solve L^T*result=rhs
template<class T>
void solve_lower_transpose_in_place(const SparseColumnLowerFactor<T> &factor, std::vector<T> &x)
{
assert(factor.n==(int)x.size());
assert(factor.n>0);
int i=factor.n;
do{
--i;
for(int j=factor.colstart[i]; j<factor.colstart[i+1]; ++j){
x[i]-=factor.value[j]*x[factor.rowindex[j]];
}
x[i]*=factor.invdiag[i];
}while(i!=0);
}
//============================================================================
// Encapsulates the Conjugate Gradient algorithm with incomplete Cholesky
// factorization preconditioner.
template <class T>
struct SparsePCGSolver
{
SparsePCGSolver(void)
{
set_solver_parameters(1e-5, 100, 0.97, 0.25);
}
void set_solver_parameters(T tolerance_factor_, int max_iterations_, T modified_incomplete_cholesky_parameter_=0.97, T min_diagonal_ratio_=0.25)
{
tolerance_factor=tolerance_factor_;
if(tolerance_factor<1e-30) tolerance_factor=1e-30;
max_iterations=max_iterations_;
modified_incomplete_cholesky_parameter=modified_incomplete_cholesky_parameter_;
min_diagonal_ratio=min_diagonal_ratio_;
}
bool solve(const SparseMatrix<T> &matrix, const std::vector<T> &rhs, std::vector<T> &result, T &relative_residual_out, int &iterations_out, int precondition=2)
{
int n=matrix.n;
if((int)m.size()!=n){ m.resize(n); s.resize(n); z.resize(n); r.resize(n); }
zero(result);
r=rhs;
double residual_out=InstantBLAS<int,T>::abs_max(r);
if(residual_out==0) {
iterations_out=0;
return true;
}
//double tol=tolerance_factor*residual_out; // relative residual
double tol=tolerance_factor;
double residual_0 = residual_out;
form_preconditioner(matrix, precondition);
apply_preconditioner( r, z, precondition);
double rho=InstantBLAS<int,T>::dot(z, r);
if(rho==0 || rho!=rho) {
iterations_out=0;
return false;
}
s=z;
fixed_matrix.construct_from_matrix(matrix);
int iteration;
for(iteration=0; iteration<max_iterations; ++iteration){
multiply(fixed_matrix, s, z);
double alpha=rho/InstantBLAS<int,T>::dot(s, z);
InstantBLAS<int,T>::add_scaled(alpha, s, result);
InstantBLAS<int,T>::add_scaled(-alpha, z, r);
residual_out=InstantBLAS<int,T>::abs_max(r);
relative_residual_out = residual_out / residual_0;
if(residual_out<=tol) {
iterations_out=iteration+1;
return true;
}
apply_preconditioner(r, z, precondition);
double rho_new=InstantBLAS<int,T>::dot(z, r);
double beta=rho_new/rho;
InstantBLAS<int,T>::add_scaled(beta, s, z); s.swap(z); // s=beta*s+z
rho=rho_new;
}
iterations_out=iteration;
relative_residual_out = residual_out / residual_0;
return false;
}
protected:
// internal structures
SparseColumnLowerFactor<T> ic_factor; // modified incomplete cholesky factor
std::vector<T> m, z, s, r; // temporary vectors for PCG
FixedSparseMatrix<T> fixed_matrix; // used within loop
// parameters
T tolerance_factor;
int max_iterations;
T modified_incomplete_cholesky_parameter;
T min_diagonal_ratio;
void form_preconditioner(const SparseMatrix<T>& matrix, int precondition=2)
{
if(precondition==2) {
// incomplete cholesky
factor_modified_incomplete_cholesky0(matrix, ic_factor, modified_incomplete_cholesky_parameter, min_diagonal_ratio);
} else if(precondition==1) {
// diagonal
ic_factor.resize(matrix.n);
zero(ic_factor.invdiag);
for(int i=0; i<matrix.n; ++i) {
for(int j=0; j<(int)matrix.index[i].size(); ++j){
if(matrix.index[i][j]==i){
ic_factor.invdiag[i] = 1./matrix.value[i][j];
}
}
}
}
}
void apply_preconditioner(const std::vector<T> &x, std::vector<T> &result, int precondition=2)
{
if (precondition==2) {
// incomplete cholesky
solve_lower(ic_factor, x, result);
solve_lower_transpose_in_place(ic_factor,result);
} else if(precondition==1) {
// diagonal
for(int_index i=0; i<(int_index)result.size(); ++i) {
result[i] = x[i] * ic_factor.invdiag[i];
}
} else {
// off
result = x;
}
}
};
#undef parallel_for
#undef parallel_end
#undef int_index
#undef parallel_block
#undef do_parallel
#undef do_end
#undef block_end
#endif

View File

@@ -646,8 +646,8 @@ matrix4x4<Scalar>::initRotationX(Scalar rot)
this->initId();
value[1][1] = (Scalar) cos(drot);
value[2][1] = (Scalar) sin(drot);
value[1][2] = (Scalar)(-sin(drot));
value[1][2] = (Scalar) sin(drot);
value[2][1] = (Scalar)(-sin(drot));
value[2][2] = (Scalar) cos(drot);
}
template<class Scalar>
@@ -659,8 +659,8 @@ matrix4x4<Scalar>::initRotationY(Scalar rot)
this->initId();
value[0][0] = (Scalar) cos(drot);
value[2][0] = (Scalar)(-sin(drot));
value[0][2] = (Scalar) sin(drot);
value[0][2] = (Scalar)(-sin(drot));
value[2][0] = (Scalar) sin(drot);
value[2][2] = (Scalar) cos(drot);
}
template<class Scalar>
@@ -672,8 +672,8 @@ matrix4x4<Scalar>::initRotationZ(Scalar rot)
this->initId();
value[0][0] = (Scalar) cos(drot);
value[1][0] = (Scalar) sin(drot);
value[0][1] = (Scalar)(-sin(drot));
value[0][1] = (Scalar) sin(drot);
value[1][0] = (Scalar)(-sin(drot));
value[1][1] = (Scalar) cos(drot);
}
template<class Scalar>

View File

@@ -14,29 +14,29 @@ namespace GamePhysics
// basic inlined vector class
template<class Scalar>
class vector4Dim
class ntlVector4Dim
{
public:
//! Constructor
inline vector4Dim() : x(0),y(0),z(0),t(0) {}
inline ntlVector4Dim() : x(0),y(0),z(0),t(0) {}
//! Copy-Constructor
inline vector4Dim ( const vector4Dim<Scalar> &v ) : x(v.x), y(v.y), z(v.z),t(v.t) {}
inline ntlVector4Dim ( const ntlVector4Dim<Scalar> &v ) : x(v.x), y(v.y), z(v.z),t(v.t) {}
//! Copy-Constructor
inline vector4Dim ( const float * v) : x((Scalar)v[0]), y((Scalar)v[1]), z((Scalar)v[2]), t((Scalar)v[3]) {}
inline ntlVector4Dim ( const float * v) : x((Scalar)v[0]), y((Scalar)v[1]), z((Scalar)v[2]), t((Scalar)v[3]) {}
//! Copy-Constructor
inline vector4Dim ( const double * v) : x((Scalar)v[0]), y((Scalar)v[1]), z((Scalar)v[2]), t((Scalar)v[3]) {}
inline ntlVector4Dim ( const double * v) : x((Scalar)v[0]), y((Scalar)v[1]), z((Scalar)v[2]), t((Scalar)v[3]) {}
//! Construct a vector from one Scalar
inline vector4Dim ( Scalar v) : x(v), y(v), z(v), t(v) {}
inline ntlVector4Dim ( Scalar v) : x(v), y(v), z(v), t(v) {}
//! Construct a vector from four Ss
inline vector4Dim ( Scalar vx, Scalar vy, Scalar vz, Scalar vw) : x(vx), y(vy), z(vz), t(vw) {}
inline ntlVector4Dim ( Scalar vx, Scalar vy, Scalar vz, Scalar vw) : x(vx), y(vy), z(vz), t(vw) {}
//! Construct a vector from four Ss
//inline vector4Dim(DirectX::XMVECTOR &v ); // TODO CHECK!
//inline ntlVector4Dim(DirectX::XMVECTOR &v ); // TODO CHECK!
// get address of array for OpenGL
Scalar *getAddress() { return value; }
@@ -44,7 +44,7 @@ public:
// Operators
//! Assignment operator
inline const vector4Dim<Scalar>& operator= ( const vector4Dim<Scalar>& v ) {
inline const ntlVector4Dim<Scalar>& operator= ( const ntlVector4Dim<Scalar>& v ) {
x = v.x;
y = v.y;
z = v.z;
@@ -52,12 +52,12 @@ public:
return *this;
}
//! Assignment operator
inline const vector4Dim<Scalar>& operator= ( Scalar s ) {
inline const ntlVector4Dim<Scalar>& operator= ( Scalar s ) {
x = y = z = t = s;
return *this;
}
//! Assign and add operator
inline const vector4Dim<Scalar>& operator+= ( const vector4Dim<Scalar>& v ) {
inline const ntlVector4Dim<Scalar>& operator+= ( const ntlVector4Dim<Scalar>& v ) {
x += v.x;
y += v.y;
z += v.z;
@@ -65,7 +65,7 @@ public:
return *this;
}
//! Assign and add operator
inline const vector4Dim<Scalar>& operator+= ( Scalar s ) {
inline const ntlVector4Dim<Scalar>& operator+= ( Scalar s ) {
x += s;
y += s;
z += s;
@@ -73,7 +73,7 @@ public:
return *this;
}
//! Assign and sub operator
inline const vector4Dim<Scalar>& operator-= ( const vector4Dim<Scalar>& v ) {
inline const ntlVector4Dim<Scalar>& operator-= ( const ntlVector4Dim<Scalar>& v ) {
x -= v.x;
y -= v.y;
z -= v.z;
@@ -81,7 +81,7 @@ public:
return *this;
}
//! Assign and sub operator
inline const vector4Dim<Scalar>& operator-= ( Scalar s ) {
inline const ntlVector4Dim<Scalar>& operator-= ( Scalar s ) {
x -= s;
y -= s;
z -= s;
@@ -89,7 +89,7 @@ public:
return *this;
}
//! Assign and mult operator
inline const vector4Dim<Scalar>& operator*= ( const vector4Dim<Scalar>& v ) {
inline const ntlVector4Dim<Scalar>& operator*= ( const ntlVector4Dim<Scalar>& v ) {
x *= v.x;
y *= v.y;
z *= v.z;
@@ -97,7 +97,7 @@ public:
return *this;
}
//! Assign and mult operator
inline const vector4Dim<Scalar>& operator*= ( Scalar s ) {
inline const ntlVector4Dim<Scalar>& operator*= ( Scalar s ) {
x *= s;
y *= s;
z *= s;
@@ -105,7 +105,7 @@ public:
return *this;
}
//! Assign and div operator
inline const vector4Dim<Scalar>& operator/= ( const vector4Dim<Scalar>& v ) {
inline const ntlVector4Dim<Scalar>& operator/= ( const ntlVector4Dim<Scalar>& v ) {
x /= v.x;
y /= v.y;
z /= v.z;
@@ -113,7 +113,7 @@ public:
return *this;
}
//! Assign and div operator
inline const vector4Dim<Scalar>& operator/= ( Scalar s ) {
inline const ntlVector4Dim<Scalar>& operator/= ( Scalar s ) {
x /= s;
y /= s;
z /= s;
@@ -121,29 +121,29 @@ public:
return *this;
}
inline void safeDivide (const vector4Dim<Scalar>& v);
inline void safeDivide (const ntlVector4Dim<Scalar>& v);
//! Negation operator
inline vector4Dim<Scalar> operator- () const {
return vector4Dim<Scalar> (-x, -y, -z, -t);
inline ntlVector4Dim<Scalar> operator- () const {
return ntlVector4Dim<Scalar> (-x, -y, -z, -t);
}
// binary operator add
inline vector4Dim<Scalar> operator+ (const vector4Dim<Scalar>&) const;
inline ntlVector4Dim<Scalar> operator+ (const ntlVector4Dim<Scalar>&) const;
// binary operator add
inline vector4Dim<Scalar> operator+ (Scalar) const;
inline ntlVector4Dim<Scalar> operator+ (Scalar) const;
// binary operator sub
inline vector4Dim<Scalar> operator- (const vector4Dim<Scalar>&) const;
inline ntlVector4Dim<Scalar> operator- (const ntlVector4Dim<Scalar>&) const;
// binary operator sub
inline vector4Dim<Scalar> operator- (Scalar) const;
inline ntlVector4Dim<Scalar> operator- (Scalar) const;
// binary operator mult
inline vector4Dim<Scalar> operator* (const vector4Dim<Scalar>&) const;
inline ntlVector4Dim<Scalar> operator* (const ntlVector4Dim<Scalar>&) const;
// binary operator mult
inline vector4Dim<Scalar> operator* (Scalar) const;
inline ntlVector4Dim<Scalar> operator* (Scalar) const;
// binary operator div
inline vector4Dim<Scalar> operator/ (const vector4Dim<Scalar>&) const;
inline ntlVector4Dim<Scalar> operator/ (const ntlVector4Dim<Scalar>&) const;
// binary operator div
inline vector4Dim<Scalar> operator/ (Scalar) const;
inline ntlVector4Dim<Scalar> operator/ (Scalar) const;
//! Get smallest component
//inline Scalar min() const { return ( x<y ) ? ( ( x<z ) ? x:z ) : ( ( y<z ) ? y:z ); // todo t!!}
@@ -185,7 +185,7 @@ public:
};
// zero element
static const vector4Dim<Scalar> ZERO;
static const ntlVector4Dim<Scalar> ZERO;
protected:
@@ -196,9 +196,9 @@ protected:
//************************************************************************
//! Addition operator
template<class Scalar>
inline vector4Dim<Scalar> vector4Dim<Scalar>::operator+ ( const vector4Dim<Scalar> &v) const
inline ntlVector4Dim<Scalar> ntlVector4Dim<Scalar>::operator+ ( const ntlVector4Dim<Scalar> &v) const
{
return vector4Dim<Scalar> (value[0]+v.value[0],
return ntlVector4Dim<Scalar> (value[0]+v.value[0],
value[1]+v.value[1],
value[2]+v.value[2],
value[3]+v.value[3]);
@@ -206,42 +206,42 @@ inline vector4Dim<Scalar> vector4Dim<Scalar>::operator+ ( const vector4Dim<Scala
//! Addition operator
template<class Scalar>
inline vector4Dim<Scalar>
vector4Dim<Scalar>::operator+(Scalar s) const
inline ntlVector4Dim<Scalar>
ntlVector4Dim<Scalar>::operator+(Scalar s) const
{
return vector4Dim<Scalar>(value[0]+s,
return ntlVector4Dim<Scalar>(value[0]+s,
value[1]+s,
value[2]+s,
value[3]+s);
}
template<class Scalar>
inline vector4Dim<Scalar>
operator+(float s, vector4Dim<Scalar> v)
inline ntlVector4Dim<Scalar>
operator+(float s, ntlVector4Dim<Scalar> v)
{
return v + s;
}
template<class Scalar>
inline vector4Dim<Scalar>
operator+(double s, vector4Dim<Scalar> v)
inline ntlVector4Dim<Scalar>
operator+(double s, ntlVector4Dim<Scalar> v)
{
return v + s;
}
template<class Scalar>
inline vector4Dim<Scalar>
operator+(int s, vector4Dim<Scalar> v)
inline ntlVector4Dim<Scalar>
operator+(int s, ntlVector4Dim<Scalar> v)
{
return v + s;
}
//! Subtraction operator
template<class Scalar>
inline vector4Dim<Scalar>
vector4Dim<Scalar>::operator-( const vector4Dim<Scalar> &v ) const
inline ntlVector4Dim<Scalar>
ntlVector4Dim<Scalar>::operator-( const ntlVector4Dim<Scalar> &v ) const
{
return vector4Dim<Scalar>(value[0]-v.value[0],
return ntlVector4Dim<Scalar>(value[0]-v.value[0],
value[1]-v.value[1],
value[2]-v.value[2],
value[3]-v.value[3]);
@@ -249,10 +249,10 @@ vector4Dim<Scalar>::operator-( const vector4Dim<Scalar> &v ) const
//! Subtraction operator
template<class Scalar>
inline vector4Dim<Scalar>
vector4Dim<Scalar>::operator-(Scalar s ) const
inline ntlVector4Dim<Scalar>
ntlVector4Dim<Scalar>::operator-(Scalar s ) const
{
return vector4Dim<Scalar>(value[0]-s,
return ntlVector4Dim<Scalar>(value[0]-s,
value[1]-s,
value[2]-s,
value[3]-s,);
@@ -260,50 +260,50 @@ vector4Dim<Scalar>::operator-(Scalar s ) const
//! Multiplication operator
template<class Scalar>
inline vector4Dim<Scalar>
vector4Dim<Scalar>::operator* ( const vector4Dim<Scalar>& v ) const
inline ntlVector4Dim<Scalar>
ntlVector4Dim<Scalar>::operator* ( const ntlVector4Dim<Scalar>& v ) const
{
return vector4Dim<Scalar>(value[0]*v.value[0],
return ntlVector4Dim<Scalar>(value[0]*v.value[0],
value[1]*v.value[1],
value[2]*v.value[2],
value[3]*v.value[3]);
}
//! Multiplication operator
template<class Scalar>
inline vector4Dim<Scalar>
vector4Dim<Scalar>::operator* (Scalar s) const
inline ntlVector4Dim<Scalar>
ntlVector4Dim<Scalar>::operator* (Scalar s) const
{
return vector4Dim<Scalar>(value[0]*s, value[1]*s, value[2]*s, value[3]*s);
return ntlVector4Dim<Scalar>(value[0]*s, value[1]*s, value[2]*s, value[3]*s);
}
//! Multiplication operator
template<class Scalar>
inline vector4Dim<Scalar>
operator* (float s, vector4Dim<Scalar> v)
inline ntlVector4Dim<Scalar>
operator* (float s, ntlVector4Dim<Scalar> v)
{
return v * s;
}
template<class Scalar>
inline vector4Dim<Scalar>
operator*(double s, vector4Dim<Scalar> v)
inline ntlVector4Dim<Scalar>
operator*(double s, ntlVector4Dim<Scalar> v)
{
return v * s;
}
template<class Scalar>
inline vector4Dim<Scalar>
operator*(int s, vector4Dim<Scalar> v)
inline ntlVector4Dim<Scalar>
operator*(int s, ntlVector4Dim<Scalar> v)
{
return v * s;
}
//! Division operator
template<class Scalar>
inline vector4Dim<Scalar>
vector4Dim<Scalar>::operator/ (const vector4Dim<Scalar> & v) const
inline ntlVector4Dim<Scalar>
ntlVector4Dim<Scalar>::operator/ (const ntlVector4Dim<Scalar> & v) const
{
return vector4Dim<Scalar> (value[0]/v.value[0],
return ntlVector4Dim<Scalar> (value[0]/v.value[0],
value[1]/v.value[1],
value[2]/v.value[2],
value[3]/v.value[3]);
@@ -311,10 +311,10 @@ vector4Dim<Scalar>::operator/ (const vector4Dim<Scalar> & v) const
//! Division operator
template<class Scalar>
inline vector4Dim<Scalar>
vector4Dim<Scalar>::operator / (Scalar s) const
inline ntlVector4Dim<Scalar>
ntlVector4Dim<Scalar>::operator / (Scalar s) const
{
return vector4Dim<Scalar> (value[0]/s,
return ntlVector4Dim<Scalar> (value[0]/s,
value[1]/s,
value[2]/s,
value[3]/s);
@@ -322,7 +322,7 @@ vector4Dim<Scalar>::operator / (Scalar s) const
//! Safe divide
template<class Scalar>
inline void vector4Dim<Scalar>::safeDivide( const vector4Dim<Scalar> &v )
inline void ntlVector4Dim<Scalar>::safeDivide( const ntlVector4Dim<Scalar> &v )
{
value[0] = (v.value[0]!=0) ? (value[0] / v.value[0]) : 0;
value[1] = (v.value[1]!=0) ? (value[1] / v.value[1]) : 0;
@@ -336,14 +336,14 @@ inline void vector4Dim<Scalar>::safeDivide( const vector4Dim<Scalar> &v )
//! Dot product
template<class Scalar>
inline Scalar dot ( const vector4Dim<Scalar> &t, const vector4Dim<Scalar> &v ) {
inline Scalar dot ( const ntlVector4Dim<Scalar> &t, const ntlVector4Dim<Scalar> &v ) {
return t.x*v.x + t.y*v.y + t.z*v.z + t.t*v.t;
}
//! Cross product
/*template<class Scalar>
inline vector4Dim<Scalar> cross ( const vector4Dim<Scalar> &t, const vector4Dim<Scalar> &v ) {
NYI vector4Dim<Scalar> cp (
inline ntlVector4Dim<Scalar> cross ( const ntlVector4Dim<Scalar> &t, const ntlVector4Dim<Scalar> &v ) {
NYI ntlVector4Dim<Scalar> cp (
( ( t.y*v.z ) - ( t.z*v.y ) ),
( ( t.z*v.x ) - ( t.x*v.z ) ),
( ( t.x*v.y ) - ( t.y*v.x ) ) );
@@ -353,36 +353,36 @@ inline vector4Dim<Scalar> cross ( const vector4Dim<Scalar> &t, const vector4Dim<
//! Compute the magnitude (length) of the vector
template<class Scalar>
inline Scalar norm ( const vector4Dim<Scalar>& v ) {
inline Scalar norm ( const ntlVector4Dim<Scalar>& v ) {
Scalar l = v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
return ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) ? 1. : sqrt ( l );
}
//! Compute squared magnitude
template<class Scalar>
inline Scalar normSquare ( const vector4Dim<Scalar>& v ) {
inline Scalar normSquare ( const ntlVector4Dim<Scalar>& v ) {
return v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
}
//! Returns a normalized vector
template<class Scalar>
inline vector4Dim<Scalar> getNormalized ( const vector4Dim<Scalar>& v ) {
inline ntlVector4Dim<Scalar> getNormalized ( const ntlVector4Dim<Scalar>& v ) {
Scalar l = v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON )
return v; /* normalized "enough"... */
else if ( l > VECTOR_EPSILON*VECTOR_EPSILON )
{
Scalar fac = 1./sqrt ( l );
return vector4Dim<Scalar> ( v.x*fac, v.y*fac, v.z*fac , v.t*fac );
return ntlVector4Dim<Scalar> ( v.x*fac, v.y*fac, v.z*fac , v.t*fac );
}
else
return vector4Dim<Scalar> ( ( Scalar ) 0 );
return ntlVector4Dim<Scalar> ( ( Scalar ) 0 );
}
//! Compute the norm of the vector and normalize it.
/*! \return The value of the norm */
template<class Scalar>
inline Scalar normalize ( vector4Dim<Scalar> &v ) {
inline Scalar normalize ( ntlVector4Dim<Scalar> &v ) {
Scalar norm;
Scalar l = v.x*v.x + v.y*v.y + v.z*v.z + v.t*v.t;
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) {
@@ -391,14 +391,14 @@ inline Scalar normalize ( vector4Dim<Scalar> &v ) {
norm = sqrt ( l );
v *= 1./norm;
} else {
v = vector4Dim<Scalar>::ZERO;
v = ntlVector4Dim<Scalar>::ZERO;
norm = 0.;
}
return ( Scalar ) norm;
}
template<class Scalar>
inline bool equal(const vector4Dim<Scalar> &v, const vector4Dim<Scalar> &c)
inline bool equal(const ntlVector4Dim<Scalar> &v, const ntlVector4Dim<Scalar> &c)
{
return (ABS(v[0]-c[0]) +
ABS(v[1]-c[1]) +
@@ -407,7 +407,7 @@ inline bool equal(const vector4Dim<Scalar> &v, const vector4Dim<Scalar> &c)
}
//! Outputs the object in human readable form as string
template<class Scalar> std::string vector4Dim<Scalar>::toString() const {
template<class Scalar> std::string ntlVector4Dim<Scalar>::toString() const {
char buf[256];
snprintf ( buf,256,"<%f,%f,%f,%f>", ( double ) ( *this ) [0], ( double ) ( *this ) [1], ( double ) ( *this ) [2] , ( double ) ( *this ) [3] );
return std::string ( buf );
@@ -415,7 +415,7 @@ template<class Scalar> std::string vector4Dim<Scalar>::toString() const {
//! Outputs the object in human readable form to stream
template<class Scalar>
std::ostream& operator<< ( std::ostream& os, const vector4Dim<Scalar>& i ) {
std::ostream& operator<< ( std::ostream& os, const ntlVector4Dim<Scalar>& i ) {
char buf[256];
snprintf ( buf,256,"[%d,%d,%d,%d]", (double) i[0], (double) i[1], (double) i[2] , (double) i[3] );
os << std::string ( buf );
@@ -424,7 +424,7 @@ std::ostream& operator<< ( std::ostream& os, const vector4Dim<Scalar>& i ) {
//! Reads the contents of the object from a stream
template<class Scalar>
std::istream& operator>> ( std::istream& is, vector4Dim<Scalar>& i ) {
std::istream& operator>> ( std::istream& is, ntlVector4Dim<Scalar>& i ) {
char c;
char dummy[4];
is >> c >> i[0] >> dummy >> i[1] >> dummy >> i[2] >> dummy >> i[3] >> c;
@@ -436,16 +436,16 @@ std::istream& operator>> ( std::istream& is, vector4Dim<Scalar>& i ) {
/**************************************************************************/
//! 3D vector class of type Real (typically float)
typedef vector4Dim<Real> Vec4;
typedef ntlVector4Dim<Real> Vec4;
// a 3D vector with double precision
typedef vector4Dim<double> nVec4d;
typedef ntlVector4Dim<double> nVec4d;
// a 3D vector with single precision
typedef vector4Dim<float> nVec4f;
typedef ntlVector4Dim<float> nVec4f;
//! 3D vector class of type int
typedef vector4Dim<int> nVec4i;
typedef ntlVector4Dim<int> nVec4i;
/* convert int,float and double vectors */
template<class T> inline nVec4i vec42I(T v) { return nVec4i((int)v[0],(int)v[1],(int)v[2],(int)v[3]); }

View File

@@ -1,611 +0,0 @@
/******************************************************************************
*
* MantaFlow fluid solver framework
* Copyright 2011-2016 Tobias Pfaff, Nils Thuerey
*
* This program is free software, distributed under the terms of the
* GNU General Public License (GPL)
* http://www.gnu.org/licenses
*
* Basic vector class
*
******************************************************************************/
#ifndef _VECTORBASE_H
#define _VECTORBASE_H
// get rid of windos min/max defines
#if defined(WIN32) || defined(_WIN32)
# define NOMINMAX
#endif
#include <stdio.h>
#include <string>
#include <limits>
#include <iostream>
#include "general.h"
// if min/max are still around...
#if defined(WIN32) || defined(_WIN32)
# undef min
# undef max
#endif
// redefine usage of some windows functions
#if defined(WIN32) || defined(_WIN32)
# ifndef snprintf
# define snprintf _snprintf
# endif
#endif
// use which fp-precision? 1=float, 2=double
#ifndef FLOATINGPOINT_PRECISION
# define FLOATINGPOINT_PRECISION 1
#endif
// VECTOR_EPSILON is the minimal vector length
// In order to be able to discriminate floating point values near zero, and
// to be sure not to fail a comparison because of roundoff errors, use this
// value as a threshold.
#if FLOATINGPOINT_PRECISION==1
typedef float Real;
# define VECTOR_EPSILON (1e-6f)
#else
typedef double Real;
# define VECTOR_EPSILON (1e-10)
#endif
#ifndef M_PI
# define M_PI 3.1415926536
#endif
#ifndef M_E
# define M_E 2.7182818284
#endif
namespace Manta
{
//! Basic inlined vector class
template<class S>
class Vector3D
{
public:
//! Constructor
inline Vector3D() : x(0),y(0),z(0) {}
//! Copy-Constructor
inline Vector3D ( const Vector3D<S> &v ) : x(v.x), y(v.y), z(v.z) {}
//! Copy-Constructor
inline Vector3D ( const float * v) : x((S)v[0]), y((S)v[1]), z((S)v[2]) {}
//! Copy-Constructor
inline Vector3D ( const double * v) : x((S)v[0]), y((S)v[1]), z((S)v[2]) {}
//! Construct a vector from one S
inline Vector3D ( S v) : x(v), y(v), z(v) {}
//! Construct a vector from three Ss
inline Vector3D ( S vx, S vy, S vz) : x(vx), y(vy), z(vz) {}
// Operators
//! Assignment operator
inline const Vector3D<S>& operator= ( const Vector3D<S>& v ) {
x = v.x;
y = v.y;
z = v.z;
return *this;
}
//! Assignment operator
inline const Vector3D<S>& operator= ( S s ) {
x = y = z = s;
return *this;
}
//! Assign and add operator
inline const Vector3D<S>& operator+= ( const Vector3D<S>& v ) {
x += v.x;
y += v.y;
z += v.z;
return *this;
}
//! Assign and add operator
inline const Vector3D<S>& operator+= ( S s ) {
x += s;
y += s;
z += s;
return *this;
}
//! Assign and sub operator
inline const Vector3D<S>& operator-= ( const Vector3D<S>& v ) {
x -= v.x;
y -= v.y;
z -= v.z;
return *this;
}
//! Assign and sub operator
inline const Vector3D<S>& operator-= ( S s ) {
x -= s;
y -= s;
z -= s;
return *this;
}
//! Assign and mult operator
inline const Vector3D<S>& operator*= ( const Vector3D<S>& v ) {
x *= v.x;
y *= v.y;
z *= v.z;
return *this;
}
//! Assign and mult operator
inline const Vector3D<S>& operator*= ( S s ) {
x *= s;
y *= s;
z *= s;
return *this;
}
//! Assign and div operator
inline const Vector3D<S>& operator/= ( const Vector3D<S>& v ) {
x /= v.x;
y /= v.y;
z /= v.z;
return *this;
}
//! Assign and div operator
inline const Vector3D<S>& operator/= ( S s ) {
x /= s;
y /= s;
z /= s;
return *this;
}
//! Negation operator
inline Vector3D<S> operator- () const {
return Vector3D<S> (-x, -y, -z);
}
//! Get smallest component
inline S min() const {
return ( x<y ) ? ( ( x<z ) ? x:z ) : ( ( y<z ) ? y:z );
}
//! Get biggest component
inline S max() const {
return ( x>y ) ? ( ( x>z ) ? x:z ) : ( ( y>z ) ? y:z );
}
//! Test if all components are zero
inline bool empty() {
return x==0 && y==0 && z==0;
}
//! access operator
inline S& operator[] ( unsigned int i ) {
return value[i];
}
//! constant access operator
inline const S& operator[] ( unsigned int i ) const {
return value[i];
}
//! debug output vector to a string
std::string toString() const;
//! test if nans are present
bool isValid() const;
//! actual values
union {
S value[3];
struct {
S x;
S y;
S z;
};
struct {
S X;
S Y;
S Z;
};
};
//! zero element
static const Vector3D<S> Zero, Invalid;
//! For compatibility with 4d vectors (discards 4th comp)
inline Vector3D ( S vx, S vy, S vz, S vDummy) : x(vx), y(vy), z(vz) {}
protected:
};
//************************************************************************
// Additional operators
//************************************************************************
//! Addition operator
template<class S>
inline Vector3D<S> operator+ ( const Vector3D<S> &v1, const Vector3D<S> &v2 ) {
return Vector3D<S> ( v1.x+v2.x, v1.y+v2.y, v1.z+v2.z );
}
//! Addition operator
template<class S, class S2>
inline Vector3D<S> operator+ ( const Vector3D<S>& v, S2 s ) {
return Vector3D<S> ( v.x+s, v.y+s, v.z+s );
}
//! Addition operator
template<class S, class S2>
inline Vector3D<S> operator+ ( S2 s, const Vector3D<S>& v ) {
return Vector3D<S> ( v.x+s, v.y+s, v.z+s );
}
//! Subtraction operator
template<class S>
inline Vector3D<S> operator- ( const Vector3D<S> &v1, const Vector3D<S> &v2 ) {
return Vector3D<S> ( v1.x-v2.x, v1.y-v2.y, v1.z-v2.z );
}
//! Subtraction operator
template<class S, class S2>
inline Vector3D<S> operator- ( const Vector3D<S>& v, S2 s ) {
return Vector3D<S> ( v.x-s, v.y-s, v.z-s );
}
//! Subtraction operator
template<class S, class S2>
inline Vector3D<S> operator- ( S2 s, const Vector3D<S>& v ) {
return Vector3D<S> ( s-v.x, s-v.y, s-v.z );
}
//! Multiplication operator
template<class S>
inline Vector3D<S> operator* ( const Vector3D<S> &v1, const Vector3D<S> &v2 ) {
return Vector3D<S> ( v1.x*v2.x, v1.y*v2.y, v1.z*v2.z );
}
//! Multiplication operator
template<class S, class S2>
inline Vector3D<S> operator* ( const Vector3D<S>& v, S2 s ) {
return Vector3D<S> ( v.x*s, v.y*s, v.z*s );
}
//! Multiplication operator
template<class S, class S2>
inline Vector3D<S> operator* ( S2 s, const Vector3D<S>& v ) {
return Vector3D<S> ( s*v.x, s*v.y, s*v.z );
}
//! Division operator
template<class S>
inline Vector3D<S> operator/ ( const Vector3D<S> &v1, const Vector3D<S> &v2 ) {
return Vector3D<S> ( v1.x/v2.x, v1.y/v2.y, v1.z/v2.z );
}
//! Division operator
template<class S, class S2>
inline Vector3D<S> operator/ ( const Vector3D<S>& v, S2 s ) {
return Vector3D<S> ( v.x/s, v.y/s, v.z/s );
}
//! Division operator
template<class S, class S2>
inline Vector3D<S> operator/ ( S2 s, const Vector3D<S>& v ) {
return Vector3D<S> ( s/v.x, s/v.y, s/v.z );
}
//! Comparison operator
template<class S>
inline bool operator== (const Vector3D<S>& s1, const Vector3D<S>& s2) {
return s1.x == s2.x && s1.y == s2.y && s1.z == s2.z;
}
//! Comparison operator
template<class S>
inline bool operator!= (const Vector3D<S>& s1, const Vector3D<S>& s2) {
return s1.x != s2.x || s1.y != s2.y || s1.z != s2.z;
}
//************************************************************************
// External functions
//************************************************************************
//! Min operator
template<class S>
inline Vector3D<S> vmin (const Vector3D<S>& s1, const Vector3D<S>& s2) {
return Vector3D<S>(std::min(s1.x,s2.x), std::min(s1.y,s2.y), std::min(s1.z,s2.z));
}
//! Min operator
template<class S, class S2>
inline Vector3D<S> vmin (const Vector3D<S>& s1, S2 s2) {
return Vector3D<S>(std::min(s1.x,s2), std::min(s1.y,s2), std::min(s1.z,s2));
}
//! Min operator
template<class S1, class S>
inline Vector3D<S> vmin (S1 s1, const Vector3D<S>& s2) {
return Vector3D<S>(std::min(s1,s2.x), std::min(s1,s2.y), std::min(s1,s2.z));
}
//! Max operator
template<class S>
inline Vector3D<S> vmax (const Vector3D<S>& s1, const Vector3D<S>& s2) {
return Vector3D<S>(std::max(s1.x,s2.x), std::max(s1.y,s2.y), std::max(s1.z,s2.z));
}
//! Max operator
template<class S, class S2>
inline Vector3D<S> vmax (const Vector3D<S>& s1, S2 s2) {
return Vector3D<S>(std::max(s1.x,s2), std::max(s1.y,s2), std::max(s1.z,s2));
}
//! Max operator
template<class S1, class S>
inline Vector3D<S> vmax (S1 s1, const Vector3D<S>& s2) {
return Vector3D<S>(std::max(s1,s2.x), std::max(s1,s2.y), std::max(s1,s2.z));
}
//! Dot product
template<class S>
inline S dot ( const Vector3D<S> &t, const Vector3D<S> &v ) {
return t.x*v.x + t.y*v.y + t.z*v.z;
}
//! Cross product
template<class S>
inline Vector3D<S> cross ( const Vector3D<S> &t, const Vector3D<S> &v ) {
Vector3D<S> cp (
( ( t.y*v.z ) - ( t.z*v.y ) ),
( ( t.z*v.x ) - ( t.x*v.z ) ),
( ( t.x*v.y ) - ( t.y*v.x ) ) );
return cp;
}
//! Project a vector into a plane, defined by its normal
/*! Projects a vector into a plane normal to the given vector, which must
have unit length. Self is modified.
\param v The vector to project
\param n The plane normal
\return The projected vector */
template<class S>
inline const Vector3D<S>& projectNormalTo ( const Vector3D<S>& v, const Vector3D<S> &n) {
S sprod = dot (v, n);
return v - n * dot(v, n);
}
//! Compute the magnitude (length) of the vector
//! (clamps to 0 and 1 with VECTOR_EPSILON)
template<class S>
inline S norm ( const Vector3D<S>& v ) {
S l = v.x*v.x + v.y*v.y + v.z*v.z;
if ( l <= VECTOR_EPSILON*VECTOR_EPSILON ) return(0.);
return ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) ? 1. : sqrt ( l );
}
//! Compute squared magnitude
template<class S>
inline S normSquare ( const Vector3D<S>& v ) {
return v.x*v.x + v.y*v.y + v.z*v.z;
}
//! compatibility, allow use of int, Real and Vec inputs with norm/normSquare
inline Real norm(const Real v) { return fabs(v); }
inline Real normSquare(const Real v) { return square(v); }
inline Real norm(const int v) { return abs(v); }
inline Real normSquare(const int v) { return square(v); }
//! Returns a normalized vector
template<class S>
inline Vector3D<S> getNormalized ( const Vector3D<S>& v ) {
S l = v.x*v.x + v.y*v.y + v.z*v.z;
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON )
return v; /* normalized "enough"... */
else if ( l > VECTOR_EPSILON*VECTOR_EPSILON )
{
S fac = 1./sqrt ( l );
return Vector3D<S> ( v.x*fac, v.y*fac, v.z*fac );
}
else
return Vector3D<S> ( ( S ) 0 );
}
//! Compute the norm of the vector and normalize it.
/*! \return The value of the norm */
template<class S>
inline S normalize ( Vector3D<S> &v ) {
S norm;
S l = v.x*v.x + v.y*v.y + v.z*v.z;
if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) {
norm = 1.;
} else if ( l > VECTOR_EPSILON*VECTOR_EPSILON ) {
norm = sqrt ( l );
v *= 1./norm;
} else {
v = Vector3D<S>::Zero;
norm = 0.;
}
return ( S ) norm;
}
//! Obtain an orthogonal vector
/*! Compute a vector that is orthonormal to the given vector.
* Nothing else can be assumed for the direction of the new vector.
* \return The orthonormal vector */
template<class S>
Vector3D<S> getOrthogonalVector(const Vector3D<S>& v) {
// Determine the component with max. absolute value
int maxIndex= ( fabs ( v.x ) > fabs ( v.y ) ) ? 0 : 1;
maxIndex= ( fabs ( v[maxIndex] ) > fabs ( v.z ) ) ? maxIndex : 2;
// Choose another axis than the one with max. component and project
// orthogonal to self
Vector3D<S> o ( 0.0 );
o[ ( maxIndex+1 ) %3]= 1;
Vector3D<S> c = cross(v, o);
normalize(c);
return c;
}
//! Convert vector to polar coordinates
/*! Stable vector to angle conversion
*\param v vector to convert
\param phi unique angle [0,2PI]
\param theta unique angle [0,PI]
*/
template<class S>
inline void vecToAngle ( const Vector3D<S>& v, S& phi, S& theta )
{
if ( fabs ( v.y ) < VECTOR_EPSILON )
theta = M_PI/2;
else if ( fabs ( v.x ) < VECTOR_EPSILON && fabs ( v.z ) < VECTOR_EPSILON )
theta = ( v.y>=0 ) ? 0:M_PI;
else
theta = atan ( sqrt ( v.x*v.x+v.z*v.z ) /v.y );
if ( theta<0 ) theta+=M_PI;
if ( fabs ( v.x ) < VECTOR_EPSILON )
phi = M_PI/2;
else
phi = atan ( v.z/v.x );
if ( phi<0 ) phi+=M_PI;
if ( fabs ( v.z ) < VECTOR_EPSILON )
phi = ( v.x>=0 ) ? 0 : M_PI;
else if ( v.z < 0 )
phi += M_PI;
}
//! Compute vector reflected at a surface
/*! Compute a vector, that is self (as an incoming vector)
* reflected at a surface with a distinct normal vector.
* Note that the normal is reversed, if the scalar product with it is positive.
\param t The incoming vector
\param n The surface normal
\return The new reflected vector
*/
template<class S>
inline Vector3D<S> reflectVector ( const Vector3D<S>& t, const Vector3D<S>& n ) {
Vector3D<S> nn= ( dot ( t, n ) > 0.0 ) ? ( n*-1.0 ) : n;
return ( t - nn * ( 2.0 * dot ( nn, t ) ) );
}
//! Compute vector refracted at a surface
/*! \param t The incoming vector
* \param n The surface normal
* \param nt The "inside" refraction index
* \param nair The "outside" refraction index
* \param refRefl Set to 1 on total reflection
* \return The refracted vector
*/
template<class S>
inline Vector3D<S> refractVector ( const Vector3D<S> &t, const Vector3D<S> &normal, S nt, S nair, int &refRefl ) {
// from Glassner's book, section 5.2 (Heckberts method)
S eta = nair / nt;
S n = -dot ( t, normal );
S tt = 1.0 + eta*eta* ( n*n-1.0 );
if ( tt<0.0 ) {
// we have total reflection!
refRefl = 1;
} else {
// normal reflection
tt = eta*n - sqrt ( tt );
return ( t*eta + normal*tt );
}
return t;
}
//! Outputs the object in human readable form as string
template<class S> std::string Vector3D<S>::toString() const {
char buf[256];
snprintf ( buf,256,"[%+4.6f,%+4.6f,%+4.6f]", ( double ) ( *this ) [0], ( double ) ( *this ) [1], ( double ) ( *this ) [2] );
// for debugging, optionally increase precision:
//snprintf ( buf,256,"[%+4.16f,%+4.16f,%+4.16f]", ( double ) ( *this ) [0], ( double ) ( *this ) [1], ( double ) ( *this ) [2] );
return std::string ( buf );
}
template<> std::string Vector3D<int>::toString() const;
//! Outputs the object in human readable form to stream
/*! Output format [x,y,z] */
template<class S>
std::ostream& operator<< ( std::ostream& os, const Vector3D<S>& i ) {
os << i.toString();
return os;
}
//! Reads the contents of the object from a stream
/*! Input format [x,y,z] */
template<class S>
std::istream& operator>> ( std::istream& is, Vector3D<S>& i ) {
char c;
char dummy[3];
is >> c >> i[0] >> dummy >> i[1] >> dummy >> i[2] >> c;
return is;
}
/**************************************************************************/
// Define default vector alias
/**************************************************************************/
//! 3D vector class of type Real (typically float)
typedef Vector3D<Real> Vec3;
//! 3D vector class of type int
typedef Vector3D<int> Vec3i;
//! convert to Real Vector
template<class T> inline Vec3 toVec3 ( T v ) {
return Vec3 ( v[0],v[1],v[2] );
}
//! convert to int Vector
template<class T> inline Vec3i toVec3i ( T v ) {
return Vec3i ( ( int ) v[0], ( int ) v[1], ( int ) v[2] );
}
//! convert to int Vector
template<class T> inline Vec3i toVec3i ( T v0, T v1, T v2 ) {
return Vec3i ( ( int ) v0, ( int ) v1, ( int ) v2 );
}
//! round, and convert to int Vector
template<class T> inline Vec3i toVec3iRound ( T v ) {
return Vec3i ( ( int ) round ( v[0] ), ( int ) round ( v[1] ), ( int ) round ( v[2] ) );
}
//! convert to int Vector if values are close enough to an int
template<class T> inline Vec3i toVec3iChecked ( T v ) {
Vec3i ret;
for (size_t i=0; i<3; i++) {
Real a = v[i];
if (fabs(a-floor(a+0.5)) > 1e-5)
errMsg("argument is not an int, cannot convert");
ret[i] = (int) (a+0.5);
}
return ret;
}
//! convert to double Vector
template<class T> inline Vector3D<double> toVec3d ( T v ) {
return Vector3D<double> ( v[0], v[1], v[2] );
}
//! convert to float Vector
template<class T> inline Vector3D<float> toVec3f ( T v ) {
return Vector3D<float> ( v[0], v[1], v[2] );
}
/**************************************************************************/
// Specializations for common math functions
/**************************************************************************/
template<> inline Vec3 clamp<Vec3>(const Vec3& a, const Vec3& b, const Vec3& c) {
return Vec3 ( clamp(a.x, b.x, c.x),
clamp(a.y, b.y, c.y),
clamp(a.z, b.z, c.z) );
}
template<> inline Vec3 safeDivide<Vec3>(const Vec3 &a, const Vec3& b) {
return Vec3(safeDivide(a.x,b.x), safeDivide(a.y,b.y), safeDivide(a.z,b.z));
}
template<> inline Vec3 nmod<Vec3>(const Vec3& a, const Vec3& b) {
return Vec3(nmod(a.x,b.x),nmod(a.y,b.y),nmod(a.z,b.z));
}
}; // namespace
#endif

View File

@@ -0,0 +1,105 @@
#include "CppUnitTest.h"
#include "RigidBodySystemSimulator.h"
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
namespace SimulatorTester
{
TEST_CLASS(PublicRigidBodiesTests)
{
public:
void setupBaseTest(RigidBodySystemSimulator * rbss) {
rbss->m_iTestCase = TESTCASEUSEDTORUNTEST;
rbss->addRigidBody(Vec3(-0.1f, -0.2f, 0.1f), Vec3(0.4f, 0.2f, 0.2f), 100.0f);
rbss->addRigidBody(Vec3(0.0f, 0.2f, 0.0f), Vec3(0.4f, 0.2f, 0.2f), 100.0);
rbss->setOrientationOf(1, Quat(Vec3(0.0f, 0.0f, 1.0f), (float)(M_PI)*0.25f));
rbss->setVelocityOf(1,Vec3(0.0f, -0.1f, 0.05f));
}
TEST_METHOD(TestRigidBodiesInitialization)
{
RigidBodySystemSimulator * rbss = new RigidBodySystemSimulator();
setupBaseTest(rbss);
Assert::AreEqual(2,(int)rbss->getNumberOfRigidBodies(),0.0001f,L"Number of Rigid bodies is not right",LINE_INFO());
Vec3 pos = rbss->getPositionOfRigidBody(0);
Assert::AreEqual(-0.1f,(float)pos.x,0.0001f,L"X coordinate of body 0 is not right",LINE_INFO());
Assert::AreEqual(-0.2f,(float)pos.y,0.0001f,L"Y coordinate of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.1f,(float)pos.z,0.0001f,L"Z coordinate of body 0 is not right",LINE_INFO());
Vec3 vel = rbss->getLinearVelocityOfRigidBody(0);
Assert::AreEqual(0.0f,(float)vel.x,0.0001f,L"X componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.0f,(float)vel.y,0.0001f,L"Y componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.0f,(float)vel.z,0.0001f,L"Z componnent of body 0 is not right",LINE_INFO());
Vec3 angvel = rbss->getAngularVelocityOfRigidBody(0);
Assert::AreEqual(0.0f,(float)angvel.x,0.0001f,L"X componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.0f,(float)angvel.y,0.0001f,L"Y componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.0f,(float)angvel.z,0.0001f,L"Z componnent of body 0 is not right",LINE_INFO());
pos = rbss->getPositionOfRigidBody(1);
Assert::AreEqual(0.0f,(float)pos.x,0.0001f,L"X coordinate of body 1 is not right",LINE_INFO());
Assert::AreEqual(0.2f,(float)pos.y,0.0001f,L"Y coordinate of body 1 is not right",LINE_INFO());
Assert::AreEqual(0.0f,(float)pos.z,0.0001f,L"Z coordinate of body 1 is not right",LINE_INFO());
vel = rbss->getLinearVelocityOfRigidBody(1);
Assert::AreEqual(0.0f,(float)vel.x,0.0001f,L"X componnent of body 1 is not right",LINE_INFO());
Assert::AreEqual(-0.1f,(float)vel.y,0.0001f,L"Y componnent of body 1 is not right",LINE_INFO());
Assert::AreEqual(0.05f,(float)vel.z,0.0001f,L"Z componnent of body 1 is not right",LINE_INFO());
angvel = rbss->getAngularVelocityOfRigidBody(1);
Assert::AreEqual(0.0f,(float)angvel.x,0.0001f,L"X componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.0f,(float)angvel.y,0.0001f,L"Y componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.0f,(float)angvel.z,0.0001f,L"Z componnent of body 0 is not right",LINE_INFO());
delete rbss;
}
TEST_METHOD(TestRigidBodiesAfterForceApplication)
{
RigidBodySystemSimulator * rbss = new RigidBodySystemSimulator();
setupBaseTest(rbss);
rbss->applyForceOnBody(0,Vec3(0.0,0.0f,0.0),Vec3(0,0,200));
for(int i =0; i < 4;i++)
rbss->simulateTimestep(0.1);
Vec3 pos = rbss->getPositionOfRigidBody(0);
Assert::AreEqual(-0.1f,(float)pos.x,0.0001f,L"X coordinate of body 0 is not right",LINE_INFO());
Assert::AreEqual(-0.2f,(float)pos.y,0.0001f,L"Y coordinate of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.16f,(float)pos.z,0.0001f,L"Z coordinate of body 0 is not right",LINE_INFO());
Vec3 vel = rbss->getLinearVelocityOfRigidBody(0);
Assert::AreEqual(0.0f,(float)vel.x,0.0001f,L"X componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.0f,(float)vel.y,0.0001f,L"Y componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(0.2f,(float)vel.z,0.0001f,L"Z componnent of body 0 is not right",LINE_INFO());
Vec3 angvel = rbss->getAngularVelocityOfRigidBody(0);
Assert::AreEqual(5.8590f,(float)angvel.x,0.0001f,L"X componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(-2.1106f,(float)angvel.y,0.0001f,L"Y componnent of body 0 is not right",LINE_INFO());
Assert::AreEqual(-1.1391f,(float)angvel.z,0.0001f,L"Z componnent of body 0 is not right",LINE_INFO());
delete rbss;
}
TEST_METHOD(TestRigidBodiesOneStepGivenTableTest)
{
RigidBodySystemSimulator * rbss = new RigidBodySystemSimulator();
rbss->m_iTestCase = TESTCASEUSEDTORUNTEST;
rbss->addRigidBody(Vec3(0.0f, 0.0f, 0.0f), Vec3(1.0f, 0.6f, 0.5f), 2.0f);
rbss->setOrientationOf(0, Quat(Vec3(0.0f, 0.0f, 1.0f), (float)(M_PI)* 0.5f));
rbss->applyForceOnBody(0, Vec3(0.3f, 0.5f, 0.25f), Vec3(1.0f, 1.0f, 0.0f));
rbss->simulateTimestep(2.0);
Vec3 pos = rbss->getPositionOfRigidBody(0);
Assert::AreEqual(0.0000f, (float)pos.x, 0.0001f, L"X coordinate of position of body 0 is not right", LINE_INFO());
Assert::AreEqual(0.0000f, (float)pos.y, 0.0001f, L"Y coordinate of position of body 0 is not right", LINE_INFO());
Assert::AreEqual(0.0000f, (float)pos.z, 0.0001f, L"Z coordinate of position of body 0 is not right", LINE_INFO());
Vec3 vel = rbss->getLinearVelocityOfRigidBody(0);
Assert::AreEqual(1.0000f, (float)vel.x, 0.0001f, L"X componnent of velocity of body 0 is not right", LINE_INFO());
Assert::AreEqual(1.0000f, (float)vel.y, 0.0001f, L"Y componnent of velocity of body 0 is not right", LINE_INFO());
Assert::AreEqual(0.0000f, (float)vel.z, 0.0001f, L"Z componnent of velocity of body 0 is not right", LINE_INFO());
Vec3 angvel = rbss->getAngularVelocityOfRigidBody(0);
Assert::AreEqual(-2.4000f, (float)angvel.x, 0.0001f, L"X componnent of angular velocity of body 0 is not right", LINE_INFO());
Assert::AreEqual(4.9180f, (float)angvel.y, 0.0001f, L"Y componnent of angular velocity of body 0 is not right", LINE_INFO());
Assert::AreEqual(-1.7647f, (float)angvel.z, 0.0001f, L"Z componnent of angular velocity of body 0 is not right", LINE_INFO());
Vec3 xa_world = Vec3(-0.3f, -0.5f, -0.25f) - pos;
Vec3 velocityA = vel + cross(angvel, xa_world);
Assert::AreEqual(-1.11186f, (float)velocityA.x, 0.0001f, L"X componnent of the velocity at the given point is not right", LINE_INFO());
Assert::AreEqual(0.929412f, (float)velocityA.y, 0.0001f, L"Y componnent of the velocity at the given point is not right", LINE_INFO());
Assert::AreEqual(2.67541f, (float)velocityA.z, 0.0001f, L"Z componnent of the velocity at the given point is not right", LINE_INFO());
delete rbss;
}
};
}

View File

@@ -163,6 +163,7 @@
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="PublicMassSpringSystemTests.cpp" />
<ClCompile Include="PublicRigidBodiesTests.cpp" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\AntTweakBar\src\AntTweakBar_2013.vcxproj">

View File

@@ -163,6 +163,7 @@
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="PublicMassSpringSystemTests.cpp" />
<ClCompile Include="PublicRigidBodiesTests.cpp" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\AntTweakBar\src\AntTweakBar_2015.vcxproj">

View File

@@ -164,6 +164,7 @@
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="PublicMassSpringSystemTests.cpp" />
<ClCompile Include="PublicRigidBodiesTests.cpp" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\AntTweakBar\src\AntTweakBar_2017.vcxproj">