/****************************************************************************** * * MantaFlow fluid solver framework * Copyright 2011-2016 Tobias Pfaff, Nils Thuerey * * This program is free software, distributed under the terms of the * GNU General Public License (GPL) * http://www.gnu.org/licenses * * Basic vector class * ******************************************************************************/ #ifndef _VECTORBASE_H #define _VECTORBASE_H // get rid of windos min/max defines #if defined(WIN32) || defined(_WIN32) # define NOMINMAX #endif #include #include #include #include #include "general.h" // if min/max are still around... #if defined(WIN32) || defined(_WIN32) # undef min # undef max #endif // redefine usage of some windows functions #if defined(WIN32) || defined(_WIN32) # ifndef snprintf # define snprintf _snprintf # endif #endif // use which fp-precision? 1=float, 2=double #ifndef FLOATINGPOINT_PRECISION # define FLOATINGPOINT_PRECISION 1 #endif // VECTOR_EPSILON is the minimal vector length // In order to be able to discriminate floating point values near zero, and // to be sure not to fail a comparison because of roundoff errors, use this // value as a threshold. #if FLOATINGPOINT_PRECISION==1 typedef float Real; # define VECTOR_EPSILON (1e-6f) #else typedef double Real; # define VECTOR_EPSILON (1e-10) #endif #ifndef M_PI # define M_PI 3.1415926536 #endif #ifndef M_E # define M_E 2.7182818284 #endif namespace Manta { //! Basic inlined vector class template class Vector3D { public: //! Constructor inline Vector3D() : x(0),y(0),z(0) {} //! Copy-Constructor inline Vector3D ( const Vector3D &v ) : x(v.x), y(v.y), z(v.z) {} //! Copy-Constructor inline Vector3D ( const float * v) : x((S)v[0]), y((S)v[1]), z((S)v[2]) {} //! Copy-Constructor inline Vector3D ( const double * v) : x((S)v[0]), y((S)v[1]), z((S)v[2]) {} //! Construct a vector from one S inline Vector3D ( S v) : x(v), y(v), z(v) {} //! Construct a vector from three Ss inline Vector3D ( S vx, S vy, S vz) : x(vx), y(vy), z(vz) {} // Operators //! Assignment operator inline const Vector3D& operator= ( const Vector3D& v ) { x = v.x; y = v.y; z = v.z; return *this; } //! Assignment operator inline const Vector3D& operator= ( S s ) { x = y = z = s; return *this; } //! Assign and add operator inline const Vector3D& operator+= ( const Vector3D& v ) { x += v.x; y += v.y; z += v.z; return *this; } //! Assign and add operator inline const Vector3D& operator+= ( S s ) { x += s; y += s; z += s; return *this; } //! Assign and sub operator inline const Vector3D& operator-= ( const Vector3D& v ) { x -= v.x; y -= v.y; z -= v.z; return *this; } //! Assign and sub operator inline const Vector3D& operator-= ( S s ) { x -= s; y -= s; z -= s; return *this; } //! Assign and mult operator inline const Vector3D& operator*= ( const Vector3D& v ) { x *= v.x; y *= v.y; z *= v.z; return *this; } //! Assign and mult operator inline const Vector3D& operator*= ( S s ) { x *= s; y *= s; z *= s; return *this; } //! Assign and div operator inline const Vector3D& operator/= ( const Vector3D& v ) { x /= v.x; y /= v.y; z /= v.z; return *this; } //! Assign and div operator inline const Vector3D& operator/= ( S s ) { x /= s; y /= s; z /= s; return *this; } //! Negation operator inline Vector3D operator- () const { return Vector3D (-x, -y, -z); } //! Get smallest component inline S min() const { return ( xy ) ? ( ( x>z ) ? x:z ) : ( ( y>z ) ? y:z ); } //! Test if all components are zero inline bool empty() { return x==0 && y==0 && z==0; } //! access operator inline S& operator[] ( unsigned int i ) { return value[i]; } //! constant access operator inline const S& operator[] ( unsigned int i ) const { return value[i]; } //! debug output vector to a string std::string toString() const; //! test if nans are present bool isValid() const; //! actual values union { S value[3]; struct { S x; S y; S z; }; struct { S X; S Y; S Z; }; }; //! zero element static const Vector3D Zero, Invalid; //! For compatibility with 4d vectors (discards 4th comp) inline Vector3D ( S vx, S vy, S vz, S vDummy) : x(vx), y(vy), z(vz) {} protected: }; //************************************************************************ // Additional operators //************************************************************************ //! Addition operator template inline Vector3D operator+ ( const Vector3D &v1, const Vector3D &v2 ) { return Vector3D ( v1.x+v2.x, v1.y+v2.y, v1.z+v2.z ); } //! Addition operator template inline Vector3D operator+ ( const Vector3D& v, S2 s ) { return Vector3D ( v.x+s, v.y+s, v.z+s ); } //! Addition operator template inline Vector3D operator+ ( S2 s, const Vector3D& v ) { return Vector3D ( v.x+s, v.y+s, v.z+s ); } //! Subtraction operator template inline Vector3D operator- ( const Vector3D &v1, const Vector3D &v2 ) { return Vector3D ( v1.x-v2.x, v1.y-v2.y, v1.z-v2.z ); } //! Subtraction operator template inline Vector3D operator- ( const Vector3D& v, S2 s ) { return Vector3D ( v.x-s, v.y-s, v.z-s ); } //! Subtraction operator template inline Vector3D operator- ( S2 s, const Vector3D& v ) { return Vector3D ( s-v.x, s-v.y, s-v.z ); } //! Multiplication operator template inline Vector3D operator* ( const Vector3D &v1, const Vector3D &v2 ) { return Vector3D ( v1.x*v2.x, v1.y*v2.y, v1.z*v2.z ); } //! Multiplication operator template inline Vector3D operator* ( const Vector3D& v, S2 s ) { return Vector3D ( v.x*s, v.y*s, v.z*s ); } //! Multiplication operator template inline Vector3D operator* ( S2 s, const Vector3D& v ) { return Vector3D ( s*v.x, s*v.y, s*v.z ); } //! Division operator template inline Vector3D operator/ ( const Vector3D &v1, const Vector3D &v2 ) { return Vector3D ( v1.x/v2.x, v1.y/v2.y, v1.z/v2.z ); } //! Division operator template inline Vector3D operator/ ( const Vector3D& v, S2 s ) { return Vector3D ( v.x/s, v.y/s, v.z/s ); } //! Division operator template inline Vector3D operator/ ( S2 s, const Vector3D& v ) { return Vector3D ( s/v.x, s/v.y, s/v.z ); } //! Comparison operator template inline bool operator== (const Vector3D& s1, const Vector3D& s2) { return s1.x == s2.x && s1.y == s2.y && s1.z == s2.z; } //! Comparison operator template inline bool operator!= (const Vector3D& s1, const Vector3D& s2) { return s1.x != s2.x || s1.y != s2.y || s1.z != s2.z; } //************************************************************************ // External functions //************************************************************************ //! Min operator template inline Vector3D vmin (const Vector3D& s1, const Vector3D& s2) { return Vector3D(std::min(s1.x,s2.x), std::min(s1.y,s2.y), std::min(s1.z,s2.z)); } //! Min operator template inline Vector3D vmin (const Vector3D& s1, S2 s2) { return Vector3D(std::min(s1.x,s2), std::min(s1.y,s2), std::min(s1.z,s2)); } //! Min operator template inline Vector3D vmin (S1 s1, const Vector3D& s2) { return Vector3D(std::min(s1,s2.x), std::min(s1,s2.y), std::min(s1,s2.z)); } //! Max operator template inline Vector3D vmax (const Vector3D& s1, const Vector3D& s2) { return Vector3D(std::max(s1.x,s2.x), std::max(s1.y,s2.y), std::max(s1.z,s2.z)); } //! Max operator template inline Vector3D vmax (const Vector3D& s1, S2 s2) { return Vector3D(std::max(s1.x,s2), std::max(s1.y,s2), std::max(s1.z,s2)); } //! Max operator template inline Vector3D vmax (S1 s1, const Vector3D& s2) { return Vector3D(std::max(s1,s2.x), std::max(s1,s2.y), std::max(s1,s2.z)); } //! Dot product template inline S dot ( const Vector3D &t, const Vector3D &v ) { return t.x*v.x + t.y*v.y + t.z*v.z; } //! Cross product template inline Vector3D cross ( const Vector3D &t, const Vector3D &v ) { Vector3D cp ( ( ( t.y*v.z ) - ( t.z*v.y ) ), ( ( t.z*v.x ) - ( t.x*v.z ) ), ( ( t.x*v.y ) - ( t.y*v.x ) ) ); return cp; } //! Project a vector into a plane, defined by its normal /*! Projects a vector into a plane normal to the given vector, which must have unit length. Self is modified. \param v The vector to project \param n The plane normal \return The projected vector */ template inline const Vector3D& projectNormalTo ( const Vector3D& v, const Vector3D &n) { S sprod = dot (v, n); return v - n * dot(v, n); } //! Compute the magnitude (length) of the vector //! (clamps to 0 and 1 with VECTOR_EPSILON) template inline S norm ( const Vector3D& v ) { S l = v.x*v.x + v.y*v.y + v.z*v.z; if ( l <= VECTOR_EPSILON*VECTOR_EPSILON ) return(0.); return ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) ? 1. : sqrt ( l ); } //! Compute squared magnitude template inline S normSquare ( const Vector3D& v ) { return v.x*v.x + v.y*v.y + v.z*v.z; } //! compatibility, allow use of int, Real and Vec inputs with norm/normSquare inline Real norm(const Real v) { return fabs(v); } inline Real normSquare(const Real v) { return square(v); } inline Real norm(const int v) { return abs(v); } inline Real normSquare(const int v) { return square(v); } //! Returns a normalized vector template inline Vector3D getNormalized ( const Vector3D& v ) { S l = v.x*v.x + v.y*v.y + v.z*v.z; if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) return v; /* normalized "enough"... */ else if ( l > VECTOR_EPSILON*VECTOR_EPSILON ) { S fac = 1./sqrt ( l ); return Vector3D ( v.x*fac, v.y*fac, v.z*fac ); } else return Vector3D ( ( S ) 0 ); } //! Compute the norm of the vector and normalize it. /*! \return The value of the norm */ template inline S normalize ( Vector3D &v ) { S norm; S l = v.x*v.x + v.y*v.y + v.z*v.z; if ( fabs ( l-1. ) < VECTOR_EPSILON*VECTOR_EPSILON ) { norm = 1.; } else if ( l > VECTOR_EPSILON*VECTOR_EPSILON ) { norm = sqrt ( l ); v *= 1./norm; } else { v = Vector3D::Zero; norm = 0.; } return ( S ) norm; } //! Obtain an orthogonal vector /*! Compute a vector that is orthonormal to the given vector. * Nothing else can be assumed for the direction of the new vector. * \return The orthonormal vector */ template Vector3D getOrthogonalVector(const Vector3D& v) { // Determine the component with max. absolute value int maxIndex= ( fabs ( v.x ) > fabs ( v.y ) ) ? 0 : 1; maxIndex= ( fabs ( v[maxIndex] ) > fabs ( v.z ) ) ? maxIndex : 2; // Choose another axis than the one with max. component and project // orthogonal to self Vector3D o ( 0.0 ); o[ ( maxIndex+1 ) %3]= 1; Vector3D c = cross(v, o); normalize(c); return c; } //! Convert vector to polar coordinates /*! Stable vector to angle conversion *\param v vector to convert \param phi unique angle [0,2PI] \param theta unique angle [0,PI] */ template inline void vecToAngle ( const Vector3D& v, S& phi, S& theta ) { if ( fabs ( v.y ) < VECTOR_EPSILON ) theta = M_PI/2; else if ( fabs ( v.x ) < VECTOR_EPSILON && fabs ( v.z ) < VECTOR_EPSILON ) theta = ( v.y>=0 ) ? 0:M_PI; else theta = atan ( sqrt ( v.x*v.x+v.z*v.z ) /v.y ); if ( theta<0 ) theta+=M_PI; if ( fabs ( v.x ) < VECTOR_EPSILON ) phi = M_PI/2; else phi = atan ( v.z/v.x ); if ( phi<0 ) phi+=M_PI; if ( fabs ( v.z ) < VECTOR_EPSILON ) phi = ( v.x>=0 ) ? 0 : M_PI; else if ( v.z < 0 ) phi += M_PI; } //! Compute vector reflected at a surface /*! Compute a vector, that is self (as an incoming vector) * reflected at a surface with a distinct normal vector. * Note that the normal is reversed, if the scalar product with it is positive. \param t The incoming vector \param n The surface normal \return The new reflected vector */ template inline Vector3D reflectVector ( const Vector3D& t, const Vector3D& n ) { Vector3D nn= ( dot ( t, n ) > 0.0 ) ? ( n*-1.0 ) : n; return ( t - nn * ( 2.0 * dot ( nn, t ) ) ); } //! Compute vector refracted at a surface /*! \param t The incoming vector * \param n The surface normal * \param nt The "inside" refraction index * \param nair The "outside" refraction index * \param refRefl Set to 1 on total reflection * \return The refracted vector */ template inline Vector3D refractVector ( const Vector3D &t, const Vector3D &normal, S nt, S nair, int &refRefl ) { // from Glassner's book, section 5.2 (Heckberts method) S eta = nair / nt; S n = -dot ( t, normal ); S tt = 1.0 + eta*eta* ( n*n-1.0 ); if ( tt<0.0 ) { // we have total reflection! refRefl = 1; } else { // normal reflection tt = eta*n - sqrt ( tt ); return ( t*eta + normal*tt ); } return t; } //! Outputs the object in human readable form as string template std::string Vector3D::toString() const { char buf[256]; snprintf ( buf,256,"[%+4.6f,%+4.6f,%+4.6f]", ( double ) ( *this ) [0], ( double ) ( *this ) [1], ( double ) ( *this ) [2] ); // for debugging, optionally increase precision: //snprintf ( buf,256,"[%+4.16f,%+4.16f,%+4.16f]", ( double ) ( *this ) [0], ( double ) ( *this ) [1], ( double ) ( *this ) [2] ); return std::string ( buf ); } template<> std::string Vector3D::toString() const; //! Outputs the object in human readable form to stream /*! Output format [x,y,z] */ template std::ostream& operator<< ( std::ostream& os, const Vector3D& i ) { os << i.toString(); return os; } //! Reads the contents of the object from a stream /*! Input format [x,y,z] */ template std::istream& operator>> ( std::istream& is, Vector3D& i ) { char c; char dummy[3]; is >> c >> i[0] >> dummy >> i[1] >> dummy >> i[2] >> c; return is; } /**************************************************************************/ // Define default vector alias /**************************************************************************/ //! 3D vector class of type Real (typically float) typedef Vector3D Vec3; //! 3D vector class of type int typedef Vector3D Vec3i; //! convert to Real Vector template inline Vec3 toVec3 ( T v ) { return Vec3 ( v[0],v[1],v[2] ); } //! convert to int Vector template inline Vec3i toVec3i ( T v ) { return Vec3i ( ( int ) v[0], ( int ) v[1], ( int ) v[2] ); } //! convert to int Vector template inline Vec3i toVec3i ( T v0, T v1, T v2 ) { return Vec3i ( ( int ) v0, ( int ) v1, ( int ) v2 ); } //! round, and convert to int Vector template inline Vec3i toVec3iRound ( T v ) { return Vec3i ( ( int ) round ( v[0] ), ( int ) round ( v[1] ), ( int ) round ( v[2] ) ); } //! convert to int Vector if values are close enough to an int template inline Vec3i toVec3iChecked ( T v ) { Vec3i ret; for (size_t i=0; i<3; i++) { Real a = v[i]; if (fabs(a-floor(a+0.5)) > 1e-5) errMsg("argument is not an int, cannot convert"); ret[i] = (int) (a+0.5); } return ret; } //! convert to double Vector template inline Vector3D toVec3d ( T v ) { return Vector3D ( v[0], v[1], v[2] ); } //! convert to float Vector template inline Vector3D toVec3f ( T v ) { return Vector3D ( v[0], v[1], v[2] ); } /**************************************************************************/ // Specializations for common math functions /**************************************************************************/ template<> inline Vec3 clamp(const Vec3& a, const Vec3& b, const Vec3& c) { return Vec3 ( clamp(a.x, b.x, c.x), clamp(a.y, b.y, c.y), clamp(a.z, b.z, c.z) ); } template<> inline Vec3 safeDivide(const Vec3 &a, const Vec3& b) { return Vec3(safeDivide(a.x,b.x), safeDivide(a.y,b.y), safeDivide(a.z,b.z)); } template<> inline Vec3 nmod(const Vec3& a, const Vec3& b) { return Vec3(nmod(a.x,b.x),nmod(a.y,b.y),nmod(a.z,b.z)); } }; // namespace #endif