Files
game-physics/Simulations/MassSpringSystemSimulator.cpp

336 lines
8.3 KiB
C++

#include "MassSpringSystemSimulator.h"
#include <stdio.h>
MassSpringSystemSimulator::MassSpringSystemSimulator()
{
m_iTestCase = 0;
m_fMass = 10;
m_fStiffness = 40;
m_iIntegrator = EULER;
}
const char* MassSpringSystemSimulator::getTestCasesStr()
{
return "Demo1,Demo2,Demo3,Demo4";
}
void MassSpringSystemSimulator::initUI(DrawingUtilitiesClass* DUC)
{
this->DUC = DUC;
switch (m_iTestCase)
{
case 0:
break;
case 1:
break;
case 2:
break;
default:
break;
}
}
void MassSpringSystemSimulator::reset()
{
m_mouse.x = m_mouse.y = 0;
m_trackmouse.x = m_trackmouse.y = 0;
m_oldtrackmouse.x = m_oldtrackmouse.y = 0;
springs.clear();
masspoints.clear();
}
void MassSpringSystemSimulator::drawFrame(ID3D11DeviceContext* pd3dImmediateContext)
{
for (size_t i = 0; i < springs.size(); i++) {
auto sp = springs.at(i);
if (!sp.isValid())
{
springs.erase(springs.begin() + i);
continue;
}
auto mp1 = sp.mp1.lock();
auto mp2 = sp.mp2.lock();
DUC->setUpLighting(Vec3(), 0.4 * Vec3(1, 1, 1), 100, 0.6 * Vec3(0.97, 0.86, 1));
DUC->drawSphere(mp1->position, Vec3(0.01));
DUC->drawSphere(mp2->position, Vec3(0.01));
DUC->beginLine();
DUC->drawLine(mp1->position, Vec3(1,0,0), mp2->position, Vec3(0,1,0));
DUC->endLine();
}
}
void MassSpringSystemSimulator::notifyCaseChanged(int testCase)
{
m_iTestCase = testCase;
system("cls");
reset();
switch (m_iTestCase)
{
case 0: {
cout << "Demo 1 !\n";
setMass(10);
setStiffness(40);
int first = addMassPoint(Vec3(0, 0, 0), Vec3(-1, 0, 0), true);
int second = addMassPoint(Vec3(0, 2, 0), Vec3(1, 0, 0), true);
addSpring(first, second, 1);
cout << "\t -- INITIAL --\n";
printSpring(springs.at(0));
cout << "--------------------------------------------------" << std::endl;
//calculate Euler for one step and print results
setIntegrator(EULER);
cout << "\n\n\t -- EULER RESULT --\n";
simulateTimestep(1);
printSpring(springs.at(0));
cout << "--------------------------------------------------" << std::endl;
reset();
first = addMassPoint(Vec3(0, 0, 0), Vec3(-1, 0, 0), true);
second = addMassPoint(Vec3(0, 2, 0), Vec3(1, 0, 0), true);
addSpring(first, second, 1);
//calculate Midpoint for one step and print results
setIntegrator(MIDPOINT);
cout << "\n\n\t -- MIDPOINT RESULT --\n";
simulateTimestep(0.005);
printSpring(springs.at(0));
break;
}
case 1: {
cout << "Demo 2 !\n";
reset();
int first = addMassPoint(Vec3(0, 0, 0), Vec3(-1, 0, 0), true);
int second = addMassPoint(Vec3(0, 2, 0), Vec3(1, 0, 0), true);
addSpring(first, second, 1.0);
cout << "\t -- INITIAL --\n";
printSpring(springs.at(0));
cout << "--------------------------------------------------" << std::endl;
//calculate Euler for a timestep of 0.005 and print results
setIntegrator(EULER);
cout << "\n\n\t -- EULER RESULT--\n";
simulateTimestep(0.005);
printSpring(springs.at(0));
break;
}
case 2: {
cout << "Demo 3 !\n";
reset();
int first = addMassPoint(Vec3(0, 0, 0), Vec3(-1, 0, 0), true);
int second = addMassPoint(Vec3(0, 2, 0), Vec3(1, 0, 0), true);
addSpring(first, second, 1.0);
cout << "\t -- INITIAL --\n";
printSpring(springs.at(0));
cout << "--------------------------------------------------" << std::endl;
//calculate Midpoint for a timestep of 0.005 and print results
setIntegrator(MIDPOINT);
cout << "\n\n\t -- MIDPOINT RESULT --\n";
simulateTimestep(0.005);
printSpring(springs.at(0));
break;
}
case 3: {
cout << "Demo 4 !\n";
break;
}
default:
break;
}
}
void MassSpringSystemSimulator::externalForcesCalculations(float timeElapsed)
{
Point2D mouseDiff;
mouseDiff.x = m_trackmouse.x - m_oldtrackmouse.x;
mouseDiff.y = m_trackmouse.y - m_oldtrackmouse.y;
if (mouseDiff.x != 0 || mouseDiff.y != 0)
{
Mat4 worldViewInv = Mat4(DUC->g_camera.GetWorldMatrix() * DUC->g_camera.GetViewMatrix());
worldViewInv = worldViewInv.inverse();
Vec3 inputView = Vec3((float)mouseDiff.x, (float)-mouseDiff.y, 0);
Vec3 inputWorld = worldViewInv.transformVectorNormal(inputView);
// find a proper scale!
float inputScale = 0.001f;
inputWorld = inputWorld * inputScale;
//m_vfMovableObjectPos = m_vfMovableObjectFinalPos + inputWorld;
}
else {
//m_vfMovableObjectFinalPos = m_vfMovableObjectPos;
}
}
void MassSpringSystemSimulator::simulateTimestep(float timeStep)
{
//update current setup for each frame
for (size_t i = 0; i < springs.size(); i++) {
auto sp = springs.at(i);
if (!sp.isValid())
{
springs.erase(springs.begin() + i);
continue;
}
auto mp1 = sp.mp1.lock();
auto mp2 = sp.mp2.lock();
if (m_iIntegrator == EULER) {
Euler(*mp1.get(), *mp2.get(), sp, timeStep);
}
else if (m_iIntegrator == MIDPOINT) {
//TODO: Add Midpoint
}
else if (m_iIntegrator == LEAPFROG) {
//TODO: Add Leapfrog
}
}
}
void MassSpringSystemSimulator::onClick(int x, int y)
{
m_trackmouse.x = x;
m_trackmouse.y = y;
}
void MassSpringSystemSimulator::onMouse(int x, int y)
{
m_oldtrackmouse.x = x;
m_oldtrackmouse.y = y;
m_trackmouse.x = x;
m_trackmouse.y = y;
}
void MassSpringSystemSimulator::setMass(float mass)
{
m_fMass = mass;
}
void MassSpringSystemSimulator::setStiffness(float stiffness)
{
m_fStiffness = stiffness;
}
void MassSpringSystemSimulator::setDampingFactor(float damping)
{
m_fDamping = damping;
}
int MassSpringSystemSimulator::addMassPoint(Vec3 position, Vec3 Velocity, bool isFixed)
{
MassPoint masspoint;
masspoint.position = position;
masspoint.velocity = Velocity;
masspoint.isFixed = isFixed;
masspoints.push_back(std::make_shared<MassPoint>(masspoint));
return masspoints.size() - 1;
}
void MassSpringSystemSimulator::addSpring(int masspoint1, int masspoint2, float initialLength)
{
auto mp1 = masspoints.at(masspoint1);
auto mp2 = masspoints.at(masspoint2);
Spring spring;
spring.mp1 = mp1;
spring.mp2 = mp2;
spring.initialLength = initialLength;
springs.push_back(spring);
}
int MassSpringSystemSimulator::getNumberOfMassPoints()
{
return masspoints.size();
}
int MassSpringSystemSimulator::getNumberOfSprings()
{
return springs.size();
}
Vec3 MassSpringSystemSimulator::getPositionOfMassPoint(int index)
{
auto mp = masspoints.at(index);
return mp->position;
}
Vec3 MassSpringSystemSimulator::getVelocityOfMassPoint(int index)
{
auto mp = masspoints.at(index);
return mp->velocity;
}
void MassSpringSystemSimulator::applyExternalForce(Vec3 force)
{
}
Vec3 MassSpringSystemSimulator::calcualtePositionTimestepEuler(Vec3 oldPosition, float timestep, Vec3 velocity)
{
return oldPosition + timestep * velocity;
}
Vec3 MassSpringSystemSimulator::calcualteVelocityTimestepEuler(Vec3 oldVelocity, float timestep, Vec3 acceleration)
{
return oldVelocity + acceleration * timestep;
}
Vec3 MassSpringSystemSimulator::calculateAcceleration(Vec3 force, float mass)
{
return force / mass;
}
void MassSpringSystemSimulator::Euler(MassPoint& masspoint1, MassPoint& masspoint2, Spring& spring, float timestep)
{
//take old position and send to calculatePositionTimestepEuler
auto PosVector = masspoint1.position - masspoint2.position;
auto lengthVector = sqrt(PosVector.x * PosVector.x + PosVector.y * PosVector.y + PosVector.z * PosVector.z);
auto normalized = PosVector / lengthVector;
// Actual Calculation
// Force of spring is -k * (l - L) * normalizedVector [for P2 we can take -F1)
auto force = -m_fStiffness * (lengthVector - spring.initialLength) * normalized;
auto foreP2 = -1 * force;
auto veloc = calcualteVelocityTimestepEuler(masspoint1.velocity, timestep, calculateAcceleration(force, 10.));
auto pos = calcualtePositionTimestepEuler(masspoint1.position, timestep, veloc);
auto veloc2 = calcualteVelocityTimestepEuler(masspoint2.velocity, timestep, calculateAcceleration(foreP2, 10.));
auto pos2 = calcualtePositionTimestepEuler(masspoint2.position, timestep, veloc2);
// Update Positions and Velocity
masspoint1.position = pos;
masspoint1.velocity = veloc;
masspoint2.position = pos2;
masspoint2.velocity = veloc2;
}
void MassSpringSystemSimulator::printSpring(const Spring& spring)
{
auto mp1 = spring.mp1.lock();
auto mp2 = spring.mp2.lock();
printf("Masspoint 1:\nPosition: %s \nVelocity: %s\n\n", mp1->position.toString().c_str(), mp1->velocity.toString().c_str());
printf("Masspoint 2:\nPosition: %s \nVelocity: %s\n", mp2->position.toString().c_str(), mp2->velocity.toString().c_str());
}